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Theoretical physics status

• Fundamental physics = GR + QM.

• Accurate empirical description (where we have access).

• Theoretically inconsistent ⇒ new theory (QG).

• Towards QG: top down vs. bottom up.

• No clues on the nature of QG!



(Idealized) phenomenologists’ workflow
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• Often, steps 2 and 3 not considered.
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GR principles

• Equivalence principle(s).

• Diffeomorphism invariance.

• Local Lorentz invariance.

• Einstein-Hilbert action.

• Torsion-free.

• 4 dims.

•
...

• These principles are not independent.

• In addition, we have the principles of quantum mechanics and
the SM.



Lorentz invariance

• As an example, we focus on local Lorentz invariance.

• Lorentz invariance = all local inertial frames are equivalent.

• Inertial ↔ free particles (w.r.t. known interactions).

• No preferred (nondynamical) spacetime directions.

• At the level of the action: inv. under local SO(1, 3)
“rotations” (tetrads).

• Motivation:
• LI is fundamental for both GR and QFT.
• LV includes CPT violation1.
• Motivated by spacetime discreteness.
• Accommodated by most QG candidates (e.g., ST, LQG).
• Possible discovery of new interactions.
• Clear phenomenology: perform the same experiment in

different frames.

1Greenberg PRL 2002
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Effective field theory

• EFT is useful when the fundamental d.o.f. are unknown.

• Requires knowing the field content and symmetries.

• Field content = standard physics;
symmetries = standard physics without LI.

• Result: Most general parametrization!
Lagrange density1

L = LGR + LSM + LLV.

where LLV contains all possible LV additions to SM + GR.

• Naive expectation: LLV is suppressed by EEW/EP ∼ 10−17.

• Terms of every dimensionality (higher dimensions more
suppressed).

1“Standard Model Extension”: Colladay+Kostelecký PRD 1997; PRD 1998;
Kostelecký PRD 2004;. . .



Example: Free Dirac spinor minimal sector in flat
spacetime

• Minimal = operators of renormalizable dimension:

L =
i

2
ψ̄Γµ∂µψ −

i

2
(∂µψ̄)Γµψ − ψ̄Mψ,

Γµ = γµ − ηµνcρνγρ − ηµνdρνγ5γ
ρ − ηµνeν

−iηµν f νγ5 −
1

2
ηµνgρσνσ

ρσ,

M = m + im5γ5 + aµγ
µ + bµγ5γ

µ +
1

2
Hµνσ

µν .

• Γµ and M are the most general matrices (e.g., m5).

• SME coefficients: aµ, bµ, cµν , dµν , eµ, f µ, gµνρ,Hµν .
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Experiments and bounds

Experiments (partial list)

• Accelerator/collider.

• Astrophysical observations.

• Birefringence/dispersion.

• Clock-comparison.

• CMB polarization.

• Laboratory gravity tests.

• Matter interferometry.

• Neutrino oscillations.

• Particle vs. antiparticle.

• Resonant cavities and lasers.

• Sidereal/annual variations.

• Spin-polarized matter.

No evidence of LV ⇒ bounds:

“Data Tables for Lorentz and
CPT Violation”

Kostelecký+Russell RMP (2011),
(’17 version:

arXiv:0801.0287v10)

• > 150 experimental results.

• Best bounds:
matter ∼ 10−34 GeV,
photons ∼ 10−43 GeV



Gravity SME sector

• Gravity is coupled with SME coefficients (not matter).

• “Minimal” subsector:

LLV =
√
−gkabcdRabcd

=
√
−g
[
−uR + sabRab + tabcdWabcd

]
.

• Decade long puzzle1: “the t-puzzle.”

• Recently2 found that tabcd is indeed physical.

• Produces cosm. anisotropies during inflation (tensor modes).

• CMB data (BB angular power spectrum): t0i0j < 10−43.

• 29 orders of mag. improvement w.r.t. best bounds on sab!

1Kostelecký+Bailey PRD 2006
2Bonder+León PRD 2017
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Self-consistency

• Are there theoretical restrictions to rule out LV terms?

• In flat spacetime, few interesting tests.
• Field redefinitions: Only some linear combinations of the

coefficient’s components are observable.

• Strong evidence that spacetime is not flat.

• Curved spacetime tests:
• Field redefinitions.
• Diffeomorphism invariance.
• Dirac algorithm and Cauchy problem.
• Gravitational d.o.f.
• Spacetime boundaries.



Field redefinitions

• ψ → e iaµx
µ
ψ shows that aµψ̄γ

µψ is unphysical.

• In flat spacetime, one-to-one correspondence between
coordinates and vectors.

• This cannot be done in curved spacetime.

• Less field redefinitions ⇒ access more coefficients1.

• No need for curvature, only nonminkowskian coordinates2.

• The metric can be redefined ⇒ alternative constraints3.

1Kostelecký+Tasson PRD 2011
2Bonder PRD 2013
3Bonder PRD 2015



Diffeomorphism invariance

• Nondynamical fields break (active) diffeomorphism invariance.

• Thus, ∇aT
ab 6= 0, which goes against the Bianchi identities!

• Position: LV must be spontaneously broken1.

1Kostelecký PRD 2004



Dirac algorithm and Cauchy problem

• Dirac algorithm: Is there a Hamilton density for which the
evolution respects the constraints?

• Cauchy problem:
• Is the evolution uniquely determined by proper initial data?
• Is the evolution continuous under changes of initial data.
• Are the effects of modifying the initial data in agreement with

spacetime causal structure?

• These conditions are difficult to verify without specifying the
coefficients dynamics.



Cauchy problem: concrete model

• Focus on a concrete model1:

L =
1

2
DµφD

µφ∗ − m2

2
φφ∗ − 1

4
BµνB

µν − κ

4
(BµB

µ − b2)2

• Flat spacetime, complex scalar field φ (matter), real vector
field Bµ.

• Bµν = ∂µBν − ∂νBµ and Dµφ = ∂µφ− ieBµφ
⇒ LLV = −BµJµ and no gauge freedom.

• Generalization of the Mexican hat potential, its VEV is
timelike.

• e, κ, and b are real positive constants.

• Canonical momenta:

π0 =
δL

δ∂0B0
= 0, πi =

δL
δ∂0B i

= B i0,

p =
δL
δ∂0φ

=
1

2
(∂0φ

∗ + ieB0φ
∗) = (p∗)∗.

1Bonder+Escobar PRD 2016



Cauchy problem: concrete model

L =
1

2
DµφD

µφ∗ − m2

2
φφ∗ − 1

4
BµνB

µν − κ

4
(BµB

µ − b2)2

• Two second-class constraints:

χ1 = π0,

χ2 = ∂iπ
i − κB0(BµB

µ − b2) + 2eIm(φp).

• The Dirac algorithm exhausted without inconsistencies.

• E.o.m. not of the form where one can use the “initial value”
theorems.

• D.o.f.: B i , π
i , φ, and p (only this initial data needed)

⇒ the initial B0 obtained through the constraints.

• No unique initial B0 ⇒ ill-posed Cauchy problem!



Cauchy problem: concrete model

• Example (homogeneous): initially B i = 0, πi = 0, φ = 0, and
p = a ∈ C.

χ2 =
[
B0(0)2 − b2

]
B0(0) = 0 ⇒ B0(0) = b, 0,−b.

• Numerically (κ = b/MeV2 = e = m/MeV = Re(a)/MeV =
Im(a)/MeV = 1):
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where the blue (yellow-dotted) line is for Reφ (Imφ).

• φ represents matter ⇒ physical consequences!



Cauchy problem: concrete model

• Easy fix: change the kinetic term for Bµ... but the Cauchy
problem for gravity can be damaged.

• Alternatives:
• “Only one measurement”.... per spatial point (unlike a

fundamental constant).
• Consider B0 as a standard d.o.f. (i.e., naive application of

Lagrange’s formalism ⇒ inequivalent quantizations?, discrete
number of d.o.f.).

• Construct a criteria to choose a special B0 (e.g., initial energy,
but there are degeneracies).

• Longterm goal: study if we can rule out spontaneous LV.



Gravitational degrees of freedom

• Palatini vs. conventional
• For the minimal gravitational LV, the standard and Palatini

approaches are equivalent1.
• More general field redefinitions, no practical applications!
• For nonminimal LV, these approaches are inequivalent.

• Boundaries
• In the phenomenological applications of LV, spacetime is

conformally flat, which has boundaries.
• For the minimal gravitational action, add2

∆SLV = ±2

∫
boundary

d3x
√
|h|nµnσkµνρσKνρ.

• Tricky to find ∆SLV for the nonminimal part!

1Bonder PRD 2015
2Bonder PRD 2015



Conclusions

• Looking for empirical clues of new physics could play an
important role towards QG.

• This must be done systematically: with generality and
checking the self-consistency.

• This type of program has been applied mainly for LV.

• EFT provides the general parametrization.

• Such a parametrization allows us to test LV experimentally
and theoretically.

• New interesting phenomenological connections with
cosmological observations.

• Several theoretical restrictions, mainly in curved spacetime.



Paradigm change
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Gibbons-Hawking term

• In the minimal gravitational LV action-variation:

δS ⊃ 1

2κ

∫
M
d4x
√
−g(g caδbd + kabcd)δRabc

d

=
1

κ

∫
M
d4x
√
−g(∇c∇dk

cabd)δgab

+
1

κ

∫
∂M

d3x
√
|h|nc(2ga[cgb]d + kcabd)∇dδgab

• In ∂M: δgab = 0 (and δhab = δna = 0) but nc∇cδgab 6= 0.

• Kab = hca∇cnb ⇒ δKab = −hcandδCcb
d = 1

2h
c
an

d∇dδgbc ⇒

nc(2ga[cgb]d+kcabd)∇dδgab = −δ[
(

2hab ± 2ncndk
cabd

)
Kab],

• To cancel the problematic term:

∆S =
1

κ

∫
∂M

d3x
√
|h|
(

2hbc ± 2nandk
abcd

)
Kbc .



Variation under diffeomorphisms

• Nongravitational LV: S =
∫
d4x
√
−gR + 2κSm(g , φ; k).

• Under a diffeo. assoc. with any ξa (of compact sup.):

δS =

∫
d4x

(
δ
√
−gR
δgab

δgab + 2κ
δLm
δgab

δgab + 2κ
δLEH
δφ

δφ

)
=

∫
d4x (−Gab + κTab) (−2∇(aξb))

= 2

∫
d4x (−∇aGab + κ∇aTab) ξb

= 2κ

∫
d4xξb∇aTab,

where use that the fields φ satisfy their e.o.m.,
δgab = Lξgab = −2∇(aξb), and the Bianchi identity.

• Hence, δS = 0 if and only if ∇aT
ab = 0.



Dirac method

• Dirac’s algorithm: method to construct the Hamiltonian.

pi=dL/dq'
i

L=L(q
i
,q'

i
)

ξ' = {ξ,H}=0

H → H + u ξ

Outcomes

Successful
theory

New ξ

Valid by fixing u

Constraints?
{ξ} No

Yes

Inconsistency
(e.g., 0=1)

Discard the
theory

H=piq'
i
-L(q

i
,pi)

• May reveal inconsistencies (example: L(q, q̇) = q).



Cauchy theorems

• Cauchy-Kowalewski requires analytic initial data, which
damages causality.

Theorem

(M, gab) globally hyperbolic, ∇a any derivative operator. The
following system of n linear equations for n unknown functions
Ψ1, . . . ,Ψn

gab∇a∇bΨi + Aa
ij∇aΨj + BijΨj + Ci = 0,

where Aa
ij , Bij , Ci are smooth vector/scalar fields, has a well-posed

Cauchy problem.

• There are more general theorems1.

• Most relevant: form of the second-derivative term.

1Wald’s GR book


