Searching for triangles in the Universe

Gustavo Niz

XII Taller – Div. GFM - SMF

Guadalajara. Nov. 2017

Content

Our Universe What we know... What we don't know...

Physics of the "cosmic collider" Early Universe Cosmic Microwave Background (CMB) Large Scale Structure (LSS) Triangles!

Dark Energy Spectroscopic Instrument

What do we know about the Universe?

Flammarion, 1888

What do we know about the Universe?

2) but also by: neutrinos, alpha particles, gravitational waves (Nobel 2017!), ...

Note: We observe the past and only on the "light-cone"

Sloan Digital Sky Survey

Our visible Universe is BIG

93 billion light years = 10^{26} m

Universe

Sun 10⁸ m

Guadalajara 10³ m

Proton 10⁻¹⁵ m

13.7 billion years

Oldest stars

13.6 billion years

The Universe expands

The Universe expands

The Universe expands

Actually, it accelerates!

(Nobel 2011 to Perlmutter, Riess & Schmidt).

Cause:

DARK ENERGY!

Expansion

gave rise to

Expansion

gave rise to

Observations

- There was no explosion
- No expansion into something else
- Expansion may be faster than speed of light

Composed today by 26.8% Dark Matter Ordinary Matter 4.9% 68.3% Dark Energy

Dark Matter

Best candidate:

Massive particle with:

Null or weak interactions with the visible matter

Best candidate:

Cosmological Constant

Empty space perturbations

$$\Lambda_{vac} = 10^{120} \Lambda_{obs}$$

EFT

$$\begin{split} S &= \int d^4x \sqrt{-g} \left[\frac{RM_*^2}{2} - cg^{00} - \Lambda \right] \\ &+ \frac{M_2^4}{2} (\delta g^{00})^2 + \frac{M_3^4}{3!} (\delta g^{00})^3 + \ldots - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K - \frac{\bar{M}_2^2}{2} \delta K^2 + \ldots \right] \\ &+ S_m \left[f^{-1}(t) g_{\mu\nu}, \psi_i \right] \;, \end{split}$$

Physics in the "cosmic collider"

The Perturbed Universe

From Quantum Fluctuations to Human Beings...

Simple model

Einstein (1915)

Geometry

Guv = 876 GN Jur Space-time Matter/energy

Non-linear theory - describes interactions!

Non-linear theory

+

0

6

Describes interactions!

Simple model

Cosmological principle: Isotropy and homogeneity

FRWL

Describes well the AVERAGED Universe

Beyond average

Universe is not fully homogeneous and isotropic

Trick: Use perturbation theory

 $\rho = \bar{\rho}(1+\delta)$

Beyond average

 $\bar{\rho} \sim 10^{-26} \mathrm{Kg/m^3}$ $\rho = \bar{\rho}(1+\delta)$

Note that

Could it really describe our Universe?

Basic idea

(in)

"Classical" pert.

The story of "pertuby"

Formally (the inflationary mechanism)

By the end of inflation we're left with a *distribution* of fluctuations

Μ

R

don't know initial conditions of each perturbation

DE

Power spectrum P(k) by the end of inflation

*Almost scale invariant

R

Μ

*Very Gaussian (pair correlations are enough NO TRIANGLES)

*Input amplitude of (0.00001)

*Gravitational waves (model dependent)

DF

M

Beyond the vanilla model

-Sharp features (temporary break of de Sitter phase)

- bumps in potential
- sound speed variations
- bending trajectories (more dof's)
- Injections of new physics

R

-Periodic features (stringy models) -O(1) non-Gaussianities -etc.

DF

Q

Linear perturbation theory

				ŀ
Q U A N T U M	R A D I A T I O N	M A T T E R	D A R K E N E R G	

Q

CMB

R

CMB (First observable)

Q

Μ

DE

CMB Anisotropies

Natural to use spherical harmonics

Power spectrum

$$< T_{lm}T_{l'm'} > = 2\pi \mathcal{D}_l \delta_{ll'} \delta_{mm'}$$

CMB Oscilations

Remnant of photon's pressure

Planck To 0.1% the flat Universe model is right

Q

CMB

- Consistent with inflation (Gaussian & almost scale invariant distribution)
- Nothing about interactions... No Triangles!
- No further features/physics
- No tensors (B-modes) yet!
- Cannot gain more mode statistics to achieve better accuracy than with Planck

Future: explore the LSS

CMB seeds the structure at large scales

Baryonic Acoustic Oscillations

Q R M DE

Benefits

Q

1) Volume Vs area (CMB) *More Resolution!!!

R

2) Non-linear physics*More difficult*Richness

Perturbation theory

1) Series does not converge

2) Active area of research

3) Tool

Triangles in the LSS

Does the distribution of galaxies in the LSS contains info like this?

LSS

TRIANGLES IN THE SKY

According to the theory of cosmic inflation, pairs of particles spontaneously surfaced throughout the primordial universe. Some pairs decayed into three "inflaton" particles, producing triangular configurations that expanded into arrangements of cosmological structures that are visible today. Triangles may appear as correlations between three hot spots in the 2-D cosmic microwave background (CMB), or between three galaxy clusters in the 3-D large-scale structure (LSS). These triangles and other shapes reveal the types and relationships of particles that existed during inflation.

Heavy numerics

Naive algorithm scales as N^3

Slepian & Eisenstein

O(N^2) algorithm

Use a Legendre Basis for the angle

COUGHS

Cosmology UG Hacking System

😣 🖃 🗉 Terminal File Edit View Search Terminal Help

gniz@148.214.16.6's password:

Last login: Thu Oct 5 09:09:56 2017 from 189-210-193-55.static.axtel.net NEWS: We have new intel compilers (icc and ifort and other tools). For now they are note listed in modules but you can call them by typing: source /opt/apps/compilers/intel/bin/ifortvars.sh intel64

source /opt/apps/compilers/intel/bin/iccvars.sh intel64
[gniz@coughs ~]\$ top

top - 00:07:56 up 73 days, 11:08, 3 users, load average: 10.31, 10.18, 10.16 Tasks: 1423 total, 12 running, 1406 sleeping, 0 stopped, 5 zombie %Cpu(s): 17.9 us, 0.4 sy, 0.0 ni, 81.7 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 26385824+total, 11307498+free, 54961256 used, 95822008 buff/cache KiB Swap: 4194300 total, 0 free, 4194300 used. 20747856+avail Mem

PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+	COMMAND
38240	alexgtz	20	0	7948304	3.318g	516 R	100.3	1.3	4348:47	Gadget2
38241	alexgtz	20	0	7948308	3.322g	516 R	100.0	1.3	4360:21	Gadget2
38243	alexgtz	20	0	7948304	4.084g	516 R	100.0	1.6	4354:21	Gadget2
38246	alexgtz	20	0	7948308	3.362g	516 R	100.0	1.3	4344:05	Gadget2
38251	alexgtz	20	0	7948216	4.306g	516 R	100.0	1.7	4348:01	Gadget2
38253	alexgtz	20	0	7948268	4.399g	516 R	100.0	1.7	4347:47	Gadget2
38242	alexotz	20	0	7948304	4.5430	516 R	99.7	1.8	4350:51	Gadget2
38244	alevotz	20	0	7948216	4 3440	516 R	99 7	1 7	4346.23	Gadget2

Test gravity

Bright Future

- LSST
- DES
- HETDEX
- WFIRST
- EUCLID
- Others.....

Bright Future

- LSST
- DES
- HETDEX
- WFIRST
- EUCLID
- Others.....

DESI MEXICO

- 12 researchers + students
 - 6 UNAM (A. de la Macorra, M. Vargas,
 - O. Valenzuela, M. Alcubierre, S. Fromentau, C. Ningombam)
 - 3 DCI-UG: Gustavo Niz, L. Ureña, A. González
 - 1 Cinvestav (T. Matos)
 - 2 ININ (J. Cervantes, A. Avilés)
- "Proyecto fronteras de la ciencia" CONACYT
- Cosmological simulations
- Data analysis
- Alternative LCDM models

Dark Energy Spectroscopic Instrument

Sensitivity to new physics scales as volume surveys -- # of modes

Our observable Universe

Volume mapped by SDSS + SDSS-II

Luminous Red Galaxies (LRG)

Emission Line Galaxies (ELG)

DESI

ULAS J1120+0641 (z~7)

Quasars

Lyman-alfa forest

Goal: to map

- > 18 millions of ELG
- > 4 millions of LRG
- > 2.5 millions of quasars
- > 0.5 millions of Ly-alfa forest

Precision < 1%

DESI

- Mayall telescope
- Kitt peak, Arizona

Dark Energy Spectroscopic Instrument

DESI

- 5000 fibers in robotic actuators
- 10 fiber cable bundles
- 3.2 deg. field of view optics
- 10 spectrographs

Mayall 4m Telescope Kitt Peak Tucson, AZ

Readout & Control

Conclusions

 Observables in the Universe (CMB & LSS) are a door to the Early Universe physics and the dark sector (dark matter & dark energy)

 High precision cosmology, such as DESI, needs same accuracy in theory (Perturbation theory) and simulations

These ideas unify particle physics and gravity

Cosmic collider

LSS

Redshift space

Cosmic collider

LSS is not Gaussian!

Assume primordial non-Gaussianity is zero

N-point correlation functions

- Non-trivial for non-Gaussian distributions
- New observables to describe galaxy distributions
 - Break degeneracies (DM-matter bias, MG, DE, neutrinos, etc.).
 - Measurements in BOSS arXiv:1607.06097 ,...
- Computationally expensive
 - Fast estimators? (e.g. arXiv:1411.6595)
- Shapes (higher dim. space). New physics?

Consistency conditions

$$\langle \Phi_{\vec{q}}(\eta)\delta_{\vec{k}_1}(\eta_1)\cdots\delta_{\vec{k}_n}(\eta_n)\rangle_{q\to 0}' = P_{\Phi}(q)\sum_a \mathcal{O}_a\langle \delta_{\vec{k}_1}(\eta_1)\cdots\delta_{\vec{k}_n}(\eta_n)\rangle',$$

$$< n+1 > \sim \mathcal{O} < n >$$

- Inherited from inflation
- Robust to baryons physics, non-perturbative effects, etc.
- Test gravity:

Equivalence principle violation when Gaussian initial conditions are assumed (arXiv:1312.6074, arXiv:1504.04366)

The story of "pertuby"

Formally (EFT perspective)

A single "clock" stopping de Sitter (accelerated) phase that spontaneously breaks time symmetry

$$\pi \sim \delta t \sim \frac{\delta \phi}{\dot{\bar{\phi}}}$$

Goldstone mode related to metric perturbations

$$\zeta \sim \frac{\delta a}{a} \sim H\pi$$

The story of "pertuby"

Most general Lagrangian which breaks time symmetry

$$S = \int d^4x \sqrt{-g} \qquad \left[\frac{1}{2} M_{\rm Pl}^2 R - M_{\rm Pl}^2 \left(3H^2(t+\pi) + \dot{H}(t+\pi) \right) + \\ + M_{\rm Pl}^2 \dot{H}(t+\pi) \left((1+\dot{\pi})^2 g^{00} + 2(1+\dot{\pi})\partial_i \pi g^{0i} + g^{ij} \partial_i \pi \partial_j \pi \right) + \\ \frac{M_2(t+\pi)^4}{2!} \left((1+\dot{\pi})^2 g^{00} + 2(1+\dot{\pi})\partial_i \pi g^{0i} + g^{ij} \partial_i \pi \partial_j \pi + 1 \right)^2 + \\ \text{Oscar, PhD students} \qquad \frac{M_3(t+\pi)^4}{3!} \left((1+\dot{\pi})^2 g^{00} + 2(1+\dot{\pi})\partial_i \pi g^{0i} + g^{ij} \partial_i \pi \partial_j \pi + 1 \right)^3 + \dots \right]$$

*Unifies most single field models *Avoids questions about inflation Tensors & Higher der.

