Tarea 6 de Análisis Vectorial

Fecha de entrega 17 de Marzo 2015

1.- Al calcular por doble integración el volumen V limitado por encima por la superficie z = f(x) y por la parte inferior por una cierta región S del plano xy, se ha llegado a la siguiente suma de integrales iteradas:

$$V = \int_0^{a \sin c} \int_{\sqrt{a^2 - y^2}}^{\sqrt{b^2 - y^2}} f(x, y) dx dy + \int_{a \sin c}^{b \sin c} \int_{y \cot c}^{\sqrt{b^2 - y^2}} f(x, y) dx dy.$$

Siendo $0 < a < b \ y \ 0 < c < \pi/2$.

2.- Dadas $A=\int_0^1 e^{-t^2} dt$ y $B=\int_0^{\frac{1}{2}} e^{-t^2} dt$. Calcular la integral reiterada

$$I = 2 \int_{-\frac{1}{\pi}}^{1} \int_{0}^{x} e^{-y^{2}} dy dx.$$

en función de A y de B. Existen enteros positivos m y n tales que

$$I = mA - nB + e^{-1} - e^{-\frac{1}{4}}$$

comprobar esta relación con los resultados obtenidos.

3.- Invertir el orden de integración para deducir la fórmula

$$\int_0^a \int_0^y e^{m(a-x)} f(x) dx dy = \int_0^a (a-x) e^{m(a-x)} f(x) dx$$

donde a y m son constantes y a > 0.

4.- Un cono se obtiene uniendo todos los puntos de una región plana S con un punto no situado en el plano de S. Designando con A el área de S, y con b la altura del cono.

Demostrar:

- a) El área de la sección producida por un plano paralelo a la base y a distancia t del vértice es $(t/h)^2 A$, si $\leq t \leq h$.
- b) El volumen del cono es $\frac{1}{3}Ah$.
- 5.- Determinar las coordendas \overline{x} y \overline{y} del centroide, de la región S limitada por 2 o mas curvas

a)
$$y = \sin x^2$$
, $y = 0$, $0 \le x \le \pi$.

b)
$$y = \sin x, y = \cos x, 0 \le x \le \frac{\pi}{4}$$

c)
$$x - 2y + 8 = 0$$
, $x + 3y + 5 = 0$, $x = -2$, $x = 4$.

6.- Una lámina delgada está limitada por el arco de parábola $y=2x-x^2$ y el intervalo $0 \le x \le 2$. Determinar su masa si la densidad en cada punto (x,y) es $\rho(x,y)=\frac{1-y}{1+x}$. 7.- Determinar el centro de gravedad de una lámina delgada rectangular ABCD si la densidad en todos sus puntos es igual al producto de sus distancias a los lados AB y AD.

8.- Demostrar el siguiente teorema:

Teorema 1 Sea S el sólido de revolución que se genera al girar la región Q alrededor del eje x. Entonces el volumen V(S) del sólido está dado por: $V(S) = 2\pi a(Q)\overline{y}$ donde a(Q) es el área de Q y \overline{y} la coordenada y de su centroide.

9.- Usando el teorema calcule el volumen de un toro de revolución, generado por la rotación alrededor del eje x de un círculo de radio r separado una distancia R del eje x.

10.- Demostrar el siguiente teorema:

Teorema 1 El centroide de la reunión de 2 regiones planas disjuntas A y B está en el segmento de recta que une al centroide de A con el centroide de B.