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observable nonzero value is 0.002. Most of the TT, TE, and
TB jackknifes pass, but following C10 and B14 we omit
them from formal consideration (and they are not included
in the table and figure). The signal-to-noise ratio in TT is
∼104 so tiny differences in absolute calibration between the
data subsets can cause jackknife failure, and the same is
true to a lesser extent for TE and TB. Even in EE the signal
to noise is approaching ∼103 (500 in the l ≈ 110 bin) and
in fact most of the low values in the table are in EE.
However, with a maximum signal-to-noise ratio of ≲10 in
BB such calibration differences are not a concern. All the
BB (and EB) jackknifes are seen to pass, with the 112
numbers in Table I having one greater than 0.99, one less
than 0.01 and a distribution consistent with uniform. Note
that the four test statistics for each spectrum and jackknife
are correlated this must be taken into account when
assessing uniformity.
To form the jackknife spectra we difference the maps

made from the two halves of the data split, divide by two,
and take the power spectrum. This holds the power
spectrum amplitude of a contribution which is uncorrelated
in the two halves (such as noise) constant, while a fully
correlated component (such as sky signal) cancels perfectly.
The amplitude of a component which appears only in one
half will stay the same under this operation as it is in the
fully coadded map and the apparent signal-to-noise will
also stay the same. For a noise-dominated experiment this
means that jackknife tests can only limit potential

contamination to a level comparable to the noise uncer-
tainty. However, the BB band powers shown in Fig. 2 have
signal-to-noise as high as 10. This means that jackknife
tests are extremely powerful in our case—the reductions in
power which occur in the jackknife spectra are empirical
proof that the B-mode pattern on the sky is highly
correlated between all data splits considered.
We have therefore conducted an unusually large number

of jackknife tests trying to imagine data splits which might
conceivably contain differing contamination. Here we
briefly describe each of these:
BICEP2 observed at deck angles of 68°, 113°, 248° and

293°. We can split these in two ways without losing the
ability to make Q and U maps (see Sec. IVG). The deck
jackknife is defined as 68° and 113° vs 248° and 293° while
the alt. deck jackknife is 68° and 293° vs 113° and 248°.
Uniform differential pointing averages down in a coad-
dition of data including an equal mix of 180° complement
angles, but it will be amplified in either of these jackknifes
(as we see in our simulations). The fact that we are passing
these jackknifes indicates that residual beam systematics of
this type are subdominant after deprojection.
The temporal-split simply divides the data into two

equal weight parts sequentially. Similarly, but at the
opposite end of the time scale range, we have the scan
direction jackknife, which differences maps made from the
right and left going half scans, and is sensitive to errors in
the detector transfer function.
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FIG. 3 (color). Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < l < 120. Right: The equivalent maps for the first of
the lensed-ΛCDMþ noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines
display the equivalent magnitude and orientation of linear polarization. Note that excess B mode is detected over lensing+noise with
high signal-to-noise ratio in the map (s=n > 2 per map mode at l ≈ 70). (Also note that the E-mode and B-mode maps use different
color and length scales.)
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Such previous studies have generically predicted levels of
foreground B-mode contamination in clean high latitude
regions equivalent to r≲ 0.01—well below that which we
observe—although they note considerable uncertainties.

A. Polarized dust projections

The main uncertainty in foreground modeling is cur-
rently the lack of a polarized dust map. (This will be
alleviated soon by the next Planck data release.) In the
meantime we have therefore investigated a number of
existing models using typical or default assumptions for
polarized dust, and have formulated a new one. A brief
description of each model is as follows:
FDS: Model 8 [88], scaled with a uniform polarization

fraction of 5%, is a commonly used all-sky baseline model
(e.g.,[44,87]). We set Q ¼ U.
BSS: Bisymmetric spiral (BSS) model of the Galactic

magnetic field [89,90]. The polarization fraction varies
across the sky in this model; by default it is scaled to match
the 3.6% all-sky average reported by WMAP [91], giving a
mean and standard deviation in the BICEP2 field
of ð5.7# 0.7Þ%.
LSA: Logarithmic spiral arm (LSA) model of the

Galactic magnetic field [89,90]. The polarization fraction
varies across the sky in this model; by default it is also
scaled to match the 3.6% all-sky average reported by
WMAP [91], giving a mean and standard deviation in
the BICEP2 field of ð5.0# 0.3Þ%.
PSM: Planck sky model (PSM) [92] version 1.7.8, run as

a “Prediction” with default settings, including 15% dust
intrinsic polarization fraction [93]. In this model, the
intrinsic polarization fraction is reduced by averaging over
variations along each line of sight. The resulting polariza-
tion fraction varies across the sky; its mean and standard
deviation in the BICEP2 field are ð5.6# 0.8Þ%.
DDM1: “Data driven model 1” (DDM1) constructed from

publicly available Planck data products. The Planck dust
model map at 353 GHz is scaled to 150 GHz assuming a
constant emissivity value of 1.6 and a constant temperature of
19.6 K [94]. A nominal uniform 5% sky polarization fraction
is assumed, and the polarization angles are taken from the
PSM. This model will be biased down due to the lack of
spatial fluctuation in the polarization fraction and angles, but
biased up due to the presence of instrument noise and
(unpolarized) cosmic infrared background anisotropy in
the Planck dust model [95].
All of the models except FDS make explicit predictions

of the actual polarized dust pattern in our field. We can
therefore search for a correlation between the models and
our signal by taking cross spectra against the BICEP2
maps. The upper panel of Fig. 6 shows the resulting BB
auto and cross spectra—the autospectra are all below the
level of our observed signal and no significant cross-
correlation is found. [The cross spectra between each
model and real data are consistent with the cross spectra

between that model and (uncorrelated) lensed-LCDMþ
noise simulations.] We note that the lack of cross-
correlation can be interpreted as due to limitation of the
models. To produce a power level from DDM1 auto
comparable to the observed excess signal would require
one to assume a uniform polarization fraction of ∼13%.
While this is well above typically assumed values, models
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FIG. 6 (color). Upper: Polarized dust foreground projections for
our field using various models available in the literature, and a
new one formulated using the information officially available
from Planck. Dashed lines show autospectra of the models, while
solid lines show cross spectra between the models and the
BICEP2 maps. The BICEP2 auto spectrum from Fig. 2 is also
shown with the lensed-ΛCDMþ r ¼ 0.2 spectrum. Lower:
Polarized synchrotron constraints for our field using the WMAP
K band (23 GHz) maps projected to 150 GHz using the mean
spectral index within our field (β ¼ −3.3) fromWMAP. The blue
points with error bars show the cross spectrum between the
BICEP2 and WMAP maps, with the uncertainty estimated from
cross spectra against simulations of the WMAP noise. The
magenta points with error bars and the dashed curve show the
WMAP auto spectrum with and without noise debias. See the text
for further details.
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the maximum is 2.0 × 10−3 equivalent to a PTE of
4.2 × 10−4 or 3.5σ.

B. Scaled-lensingþ tensors

Lensing deflections of the CMB photons as they travel
from last scattering remap the patterns slightly. In temper-
ature this leads to a slight smoothing of the acoustic peaks,
while in polarization a small B mode is introduced with a
spectrum similar to a smoothed version of the EE spectrum
a factor ∼100 lower in power. Using their own and other
data Planck [9] quote a limit on the amplitude of the lensing
effect versus the ΛCDM expectation of AL ¼ 0.99# 0.05.
Figure 12 shows a joint constraint on the tensor-to-scalar

ratio r and the lensing scale factor AL using our BB band
powers 1–9. As expected there is a weak anticorrelation—
one can partially explain the low l excess by scaling up the
lensing signal. However, the constraint is mostly driven by
band powers six through nine where the IGW signal is
small. The maximum likelihood scaling is≈1.75, ∼2σ from
unity. Marginalizing over r the likelihood ratio between
peak and zero is 3 × 10−7, equivalent to a PTE of
4.7 × 10−8 or a 5.5σ detection of lensing in the BICEP2
BB auto spectrum. We note again that the high values of
band powers six and seven are not present in the prelimi-
nary cross spectra against Keck Array shown in Fig. 9.

C. Compatibility with temperature data

If present at last scattering, tensor modes will add power to
all spectra including TT. For an r value of 0.2 the
contribution to TT at the largest angular scales (l < 10)
would be ≈10% of the level measured by WMAP and
Planck. The theoreticalΛCDM power level expected at these
scales is dependent on several cosmological parameters
including the spectral index of the initial scalar perturbations

ns and the optical depth to the last scattering surface τ.
However, by combining temperature data taken over a wide
range of angular scales indirect limits on r have been set. A
combination of WMAPþ SPT data [4] yields r < 0.18
(95% confidence) tightening to r < 0.11 when also includ-
ing measurements of the Hubble constant and baryon
acoustic oscillations (BAO). More recently Planck [9] quote
r < 0.11 using a combination of Planck, SPT and ACT
temperature data, plus WMAP polarization (to constrain τ).
These limits appear to be in moderately strong tension

with interpretation of our B-mode measurements as pri-
marily due to tensors. One possibility is a larger than
anticipated contribution from polarized dust, but as our
present data disfavor this one can ask what additional
extensions to the standard model might resolve the
situation.
One obvious modification is to allow the initial scalar

perturbation spectrum to depart from the simple power law
form which is assumed in the base ΛCDM model. A
standard way in which this is done is by introducing a
“running” parameter dns=d ln k. In Planck XVI [9] the
constraint relaxes to r < 0.26 (95% confidence) when
running is allowed with dns=d ln k ¼ −0.022# 0.010
(68%) (for the PlanckþWPþ highL data combination).
In Fig. 13 we show the constraint contours when allowing
running as taken from Fig. 23 of [9], and how these change
when the BICEP2 data are added. The red contours on the
plot are simply the Monte Carlo Markov chains (MCMC)
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FIG. 12 (color). Joint constraints on the tensor-to-scalar ratio r
and the lensing scale factor AL using the BICEP2 BB band
powers 1–9. One and two σ contours are shown. The horizontal
dotted lines show the 1σ constraint from Planck [9]. The B-mode
lensing signal is detected at 5.5σ, with an amplitude ∼2σ higher
than the expected value.

FIG. 13 (color). Indirect constraints on r from CMB temper-
ature spectrum measurements relax in the context of various
model extensions. Shown here is one example, following Planck
XVI [9] Fig. 23, where tensors and running of the scalar spectral
index are added to the base ΛCDMmodel. The contours show the
resulting 68% and 95% confidence regions for r and the scalar
spectral index ns when also allowing running. The red contours
are for the “PlanckþWPþ highL” data combination, which for
this model extension gives a 95% bound r < 0.26 [9]. The blue
contours add the BICEP2 constraint on r shown in the center
panel of Fig. 10. See the text for further details.
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Abstract

Motivated by the recent CMB B-mode observation announced by the BICEP2 collabo-
ration, we study simple inflation models in the Randall-Sundrum brane-world cosmology. A
non-standard evolution of the universe in the brane-world cosmology alters the inflationary
predictions of the spectral index (ns) and the tensor-to-scalar ratio (r) from those obtained in
the standard cosmology. In particular, the tensor-to-scalar ratio is enhanced in the presence
of the fifth dimension, and simple inflationary models which predict very small r values in the
standard cosmology can yield r values consistent with the BICEP2 result, r = 0.2+0.07

�0.05. Con-
firmation of the BICEP2 result and more precise measurements of ns and r in the near future
allow us to constrain the five dimensional Planck mass M5 of the brane-world scenario. We
also discuss the post inflationary scenario, namely, reheating of the universe through inflaton
decay to the Standard Model particles. When we require renormalizablity of the model, the
inflaton only couples with the Higgs doublet in the Standard Model. If M5 is as low as 106

GeV, the mass of inflation is be of O(100 GeV). We investigate implications to Higgs boson
phenomenology with such a light inflaton.
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firmed, it will represent the first detection of gravity
waves from inflation [1]. This is of paramount impor-
tance, since - under the assumption that the observed
gravity waves are those created by a period of quasi de-
Sitter inflationary expansion (namely that Pt ⇠ V/M

4

p ,

where Pt is the tensor power spectrum, V 1/4 is the energy
scale of inflation, and Mp ' 2.4⇥1018 GeV is the reduced
Planck mass) - it allows us, for the first time, to determine
the energy scale of inflation. From the parametrization
r ⌘ Pt/Ps, and from the measured value of the scalar
power spectrum, Ps ' 2.45 ⇥ 10�9, one obtains the well
known relation

V

1/4 ' 2.25 · 1016 GeV
⇣

r

0.2

⌘
1/4

. (1)

Therefore, if the B-mode signal observed by BICEP2 is
due to inflationary vacuum modes, we have now learnt
that inflation took place at the GUT scale.

Taken at face value, the BICEP2 value is in strong
tension with the 2� limit r < 0.11 obtained by the
Planck inflation analysis [2]. Such a limit however re-
lies on the scaling of the temperature anisotropy data
(supplemented by the WMAP large-scale polarization
likelihood), and not on the direct measurement of the
B-mode polarization. The r < 0.11 limit appears ro-
bust under the inclusion of several data sets (such as the
ACT+SPT temperature data, BAO, and the Planck lens-
ing [2]). However, it crucially relies in the assumption of
a constant spectral tilt ns.

Specifically, it is obtained from the
Planck+ACT+SPT temperature data (with the Planck
data supplemented by the WMAP large-scale polar-
ization likelihood), under the assumption of constant
spectral tilt ns = 0.960 ± 0.007 [2]. As discussed in [2],
a more relaxed limit is obtained if ns is allowed to vary
with scale k. Specifically, it is customary to parametrize
the scalar power spectrum as

P⇣ (k) ⌘ P (k
0

)

✓
k

k

0

◆ns�1+

1
2↵s ln

k
k0

, (2)

where k

0

= 0.05 Mpc�1, is the chosen pivot scale (this is
the scale at which also r is defined) and the parameter
↵s denotes the running of the scalar spectral tilt [3] with
↵s =

d ns
d ln k .

If ↵s 6= 0, the r < 0.11 limit is relaxed to r

<⇠ 0.25.
From Figure 5 of [2] we infer that a value ↵s ⇠ �0.02 is
required to reconcile the temperature data with r = 0.2.
Such a large value of |↵s| is not a generic prediction of
slow roll inflationary models. Indeed, in terms of the slow
roll parameters

✏ ⌘
M

2

p

2

✓
V,�

V

◆
2

, ⌘ ⌘ M

2

p
V,��

V

, ⇠

2 ⌘ M

4

p
V,�V,���

V

2

,

(3)
where V denotes the potential of the inflaton � and
comma denotes a derivative, we have the well known slow

roll relations

r = 16 ✏ , ns � 1 = 2⌘ � 6✏ ,

↵s = �2⇠2 +
r

2
(ns � 1) +

3

32
r

2 ' �2⇠2 � 0.00025 ,

(4)

where ns = 0.96, r = 0.2 has been used in the final
numerical estimate. This is typically much smaller than
the required value, since, as evident in (4), the running
is generically of second order in slow roll.
In principle, models can be constructed in which the

third derivative term ⇠

2 is “anomalously large”. How-
ever, besides being hard to motivate, it is di�cult to
maintain a large third derivative, while the first two
derivatives are small, for a su�ciently long duration of in-
flation, [4, 5], so that the models in which a large running
is achieved have potentials with some bump-like feature
or superimposed oscillations [4, 6, 7, 9, 10], or possess
some peculiar aspects beyond standard scenarios [11–15].
In summary, it appears that r = 0.2 can be recon-

ciled with the limits from the temperature anisotropies
through a negative running, which is however of substan-
tially larger magnitude than the generic slow roll predic-
tion. It is possible that the value of r from the polariza-
tion will shift towards r ⇠ 0.1, in which case the tension
with the temperature data can be relaxed (or disappear
altogether). This can happen factoring in both the sta-
tistical uncertainty in the BICEP2 r = 0.2+0.07

�0.05 result,
and the decrease of r that appears in most of the model-
dependent dust corrections [1].
Remarkably, r close to 0.15 appears as a prediction of

the simplest models of inflation, such as chaotic infla-
tion [16] and natural inflation [17]. Even if UV complete
theories typically leads to a lower inflationary scale, it
is possible to construct models that can evade the fun-
damental constraints which typically make high-scale in-
flation di�cult to realize [18–21] and still display such
simple potentials.
However, from a theoretical point of view, it is interest-

ing to understand the implications that a large measured
value for r from polarization would have for inflation-
ary model building. In this work we discuss two addi-
tional possibilities (in addition to the already mentioned
running of the spectral tilt) to suppress the large scale
temperature signal in presence of a large r ' 0.2.
The first mechanism relies on the presence of a

large scale suppression in the scalar power, that we
parametrize with a step function. A similar idea was
already explored in [22], in order to address the sup-
pressed power of the temperature anisotropies at the
largest scales. The best fit to the first year WMAP
data was obtained if the power drops to zero at scales
k

<⇠ 5⇥ 10�4 Mpc�1 [23]. Such a strong suppression can
for example occur if the universe is closed, with a cur-
vature radius comparable to the horizon at the onset of
inflation [24], or if the inflaton was in fast roll at the
beginning of the last ⇠ 60 e-folds of inflation [22]. In
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10/45	
  



Caveat	
  

Ø  Tension	
  with	
  the	
  upper	
  bound	
  on	
  r	
  <	
  0.11	
  by	
  Planck	
  
satellite	
  

Ø  A	
  nega*ve	
  running	
  of	
  the	
  spectral	
  index	
  ~	
  O(0.01)	
  
needs	
  to	
  reconcile	
  BICEP2	
  and	
  Planck	
  data	
  	
  

Ø  Dust	
  uncertainty	
  may	
  be	
  higher	
  than	
  that	
  modeled	
  in	
  
BICEP2	
  analysis	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Mortonson	
  &	
  Seljak,	
  1405.5857	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Flauger,	
  Hill	
  &	
  Spargel,	
  1405.7351	
  

More	
   data	
   by	
   upcoming	
  measurements	
   such	
   as	
   Planck	
  
and	
  Keck	
  Array	
  are	
  required	
  to	
  resolve	
  this	
  situa*on!	
  	
  	
  	
  



Infla*onary	
  predic*ons	
  
Before we discuss the models, let’s recall the basic equations used to calculate the
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Here and below we use units mP = 2.4⇥ 1018 GeV = 1, and primes denote derivatives with
respect to the inflaton field �. The spectral index ns, the tensor to scalar ratio r and the
running of the spectral index ↵ ⌘ dns/d ln k are given in the slow-roll approximation by
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which should satisfy �2

R = 2.215 ⇥ 10�9 from the Planck measurement [2] with the pivot
scale chosen at k
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The number of e-folds is given by

N =
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where �
0

is the inflaton value at horizon exit of the scale corresponding to k
0

, and �e is the
inflaton value at the end of inflation, defined by max(✏(�e), |⌘(�e)|, |⇣2(�e)|) = 1. The value
of N depends logarithmically on the energy scale during inflation as well as the reheating
temperature, and is typically around 50–60.

2 Radiatively corrected quadratic and quartic potentials

Inflation driven by scalar potentials of the type

V =
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2
m2�2 +

�

4!
�4 (2.1)

provide a simple realization of an inflationary scenario [5]. However, the inflaton field �
must have couplings to ‘matter’ fields which allow it to make the transition to hot big bang
cosmology at the end of inflation. Couplings such as (1/2)h�N̄N or (1/2)g2�2�2 (to a
Majorana fermion N and a scalar � respectively) induce correction terms to the potential
which, to leading order, take the Coleman-Weinberg form [18]

V
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Here, µ is a renormalization scale which we set to µ = mP
1, and  = (2h4 � g4)/(32⇡2) in

the one loop approximation.

1For the radiatively corrected quartic potential the observable inflationary parameters do not depend on
the choice of the renormalization scale. However, this may not be the case for the radiatively corrected
quadratic potential, as discussed in ref. [19].
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  in	
  light	
  of	
  BOCEP2:	
  an	
  update	
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  &	
  Shafi,	
  1403.6493	
  

M5(GeV) m(GeV) V (�0)1/4 (GeV) �0 �e ns r �↵ (10�4)

1 1.46⇥ 1013 1.97⇥ 1016 15.6 1.41 0.967 0.132 5.46
1.02⇥ 1017 1.38⇥ 1013 1.91⇥ 1016 15.3 1.41 0.965 0.160 5.50
7.72⇥ 1016 1.20⇥ 1013 1.75⇥ 1016 14.8 1.41 0.962 0.189 5.58
5.87⇥ 1016 9.41⇥ 1013 1.49⇥ 1016 13.7 1.41 0.958 0.212 6.47
3.79⇥ 1016 5.69⇥ 1013 1.04⇥ 1016 11.1 1.41 0.956 0.219 7.28
2.29⇥ 1016 3.14⇥ 1012 6.47⇥ 1015 7.77 1.40 0.957 0.210 7.24
2.19⇥ 1015 2.77⇥ 1011 6.30⇥ 1014 0.834 0.250 0.959 0.198 6.84
1.23⇥ 1015 1.55⇥ 1011 3.54⇥ 1014 0.469 0.141 0.959 0.198 6.83
5.00⇥ 1014 6.30⇥ 1010 1.44⇥ 1014 0.190 0.0573 0.959 0.198 6.83

Table 1: The values of parameters for the potential V = (1/2)m2�2 for number of e-folds
N0 = 60, in the Planck unit (MP = 1) unless otherwise stated.

model in the standard cosmology. For various values of M5, the inflationary predictions stay

within the contour of the BICEP2 result at 95% confidence level. The results for the running of

the spectral index (ns vs. ↵) is shown in the right panel, for N0 =50, 60, 70 from left to right.

We also show our results for the 5-dimensional Planck mass (ns vs. M5) and the inflation mass

(ns vs. m) in Fig. 2. In these plots, the turning points appears around V/⇢0 ⇠ 1. Numerical

values for selected M5 values for N0 = 60 are listed in Table 1.

Next we analyze the textbook quartic potential model,

V =
�

4!
�4. (18)

In the standard cosmology, we find the following inflationary predictions:

ns = 1� 6

2N0 + 3
, r =

32

2N0 + 3
, ↵ = � 12

(2N0 + 3)2
. (19)

The quartic coupling (�)is determined by the power spectrum measured by the Planck satellite

experiment, PS = 2.215⇥ 10�9 at the pivot scale k0 = 0.05 Mpc�1 as

� = 8.46⇥ 10�13

✓
123

2N0 + 3

◆3

. (20)

When the limit V/⇢0 � 1 is satisfied during the inflation, we find in the brane-world

cosmology

ns = 1� 9

3N0 + 2
, r =

48

3N0 + 2
, ↵ = � 27

(3N0 + 2)2
. (21)

The predicted values are very close to those in the standard cosmology for N0 � 1. Using the

Planck result, PS = 2.215⇥ 10�9, we find

� = 3.26⇥ 10�14

✓
182

3N0 + 2

◆3

, (22)
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where the slow-roll parameters are defined as

✏ =
V 0

6H2

�
lnH2

�0
, ⌘ =

V 00

3H2
. (6)

The running of the spectral index, ↵ = dns/d ln k, is given by

↵ =
dns

d ln k
=

V 0

3H2
(6✏0 � 2⌘0) . (7)

On the other hand, in the presence of the extra dimension where graviton resides, the power

spectrum of tensor perturbation is modified to be [?]

PT = 8

✓
H

2⇡

◆2

F (x0)
2, (8)

where x0 = 2
p
3H2/⇢0, and

F (x) =

 p
1 + x2 � x2 ln

"
1

x
+

r
1 +

1

x2

#!�1/2

. (9)

For x0 ⌧ 1 (which means V/⇢0 ⌧ 1), F (x0) ' 1, and Eq. (8) reduces to the formula in the

standard cosmology. For x0 � 1 (which means V/⇢0 � 1), F (x0) ' p
3x0/2. Hence, PT is

enhanced by F (x0)2 ' 3x0/2 ' 3V/⇢0. The tensor-to-scalar ratio is defined as r = PT /PS .

The number of e-folds is given by

N0 =

Z �0

�e

d�
V

V 0

✓
1 +

V

⇢0

◆
, (10)

where �0 is the inflaton value at horizon exit of the scale corresponding to k0, and �e is the

inflaton value at the end of inflation, defined by max[✏(�e), |⌘(�e)|] = 1. In the standard

cosmology, we usually consider N0 = 50 � 60 in order to solve the horizon problem. Since

the expansion rate in the brane-world cosmology is larger than the standard cosmology case,

we may expect a larger value for the e-fold number. For the model-independent lower bound,

⇢
1/4
0 > 1 MeV, the upper bound N0 < 75 was found in [?]. In what follows, we consider N0 =50,

60, 70, for reference values.

2.1 Textbook inflationary models

We first analyze the textbook chaotic inflation model with a quadratic potential [?],

V =
1

2
m2�2. (11)

4

log
10

(||) m (GeV) V (�
0

)1/4 (GeV) �
0

�e ns r ↵ (10�4)

negative  branch
�14.0 1.38⇥ 1013 2.23⇥ 1016 17.0 1.42 0.962 0.215 �4.81
�14.5 1.46⇥ 1013 2.07⇥ 1016 16.0 1.41 0.967 0.159 �5.32
�16.0 1.46⇥ 1013 1.98⇥ 1016 15.6 1.41 0.967 0.133 �5.46

V = (1/2)m2�2

1.46⇥ 1013 1.98⇥ 1016 15.6 1.41 0.967 0.132 �5.46

�2 branch
�16.0 1.46⇥ 1013 1.97⇥ 1016 15.5 1.41 0.967 0.131 �5.47
�14.5 1.41⇥ 1013 1.85⇥ 1016 15.0 1.41 0.965 0.102 �5.15
�14.3 1.30⇥ 1013 1.69⇥ 1016 14.4 1.41 0.959 0.070 �3.79
�14.2 1.22⇥ 1013 1.59⇥ 1016 14.0 1.41 0.954 0.056 �2.59

Hilltop branch
�14.2 1.01⇥ 1013 1.37⇥ 1016 13.2 1.41 0.940 0.031 0.58
�14.3 7.9⇥ 1012 1.16⇥ 1016 12.5 1.41 0.921 0.016 3.41

Table 1. Radiatively corrected �2 potential: The values of parameters for number of e-folds N = 60,
in units mP = 1 unless otherwise stated.

The one loop contribution to � is of order (4!), which is ⇠ m2/�2 in the parameter
range where the  term has a significant e↵ect on inflationary observables. In this case
our assumption � ⌧ m2/�2 corresponds to the renormalized coupling being small compared
to the one loop contribution. Alternatively, assume that � � m2/�2 during inflation, so
that inflation is primarily driven by the quartic term. The numerical results for this case are
displayed in Table 2 and Figure 2. As before, there are two solutions for a given positive value
of , and the predictions interpolate between a strongly tilted red spectrum with suppressed r
to the tree level result given in eq. (2.4). For negative  values the potential during inflation
interpolates between �4 and �4 ln� potentials, as a consequence the predictions remain close
to eq. (2.4).

3 Higgs potential

In this section we consider an inflationary scenario with the potential of the form,

V =
�

4!

�
�2 � v2

�
2

, (3.1)

where � is the inflaton field, � is a real, positive coupling, and v is the vacuum expectation
value (VEV) at the minimum of the potential. This Higgs potential was first considered
for inflation in ref. [21], and more recently in refs. [4, 8–10]. Radiative corrections to the
Higgs potential were analyzed in refs. [7, 11]. Here, for simplicity, we have assumed that
the inflaton is a real field, but it is straightforward to extend the model to the Higgs model,
where the inflaton field is the Higgs field and a gauge symmetry is broken by the inflaton
VEV.
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Figure 3. Higgs potential: ns vs. r (left panel) and ns vs. ↵ (right panel) for various v values,
along with the ns vs. r contours (at the confidence levels of 68% and 95%) given by the BICEP2
collaboration (Planck+WP+highL+BICEP2). The dashed portions are for � > v. The black points
and triangles are predictions in the textbook quartic and quadratic potential models, respectively. N
is taken as 50 (left curves) and 60 (right curves).

potential is well approximated as the quartic potential, and hence the predictions are well
approximated by eq. (2.4), corresponding to the black points in Figure 3. On the other hand,
for v � 1 the potential during the observable part of inflation is approximately the quadratic
potential, so that the inflationary predictions approach the values given by eq. (2.3) as the
inflaton VEV is increased.

4 Coleman-Weinberg potential

In this section we briefly review a class of models which appeared in the early eighties in the
framework of non-supersymmetric GUTs and employed a GUT singlet scalar field � [12, 22].
These (Shafi-Vilenkin) models are based on a Coleman-Weinberg potential [18] which can be
expressed as [23]:

V (�) = A�4


ln

✓
�

v

◆
� 1

4

�
+

Av4

4
, (4.1)

where v denotes the � VEV at the minimum. Note that V (� = v) = 0, and the vacuum
energy density at the origin is given by V

0

= Av4/4. Inflationary predictions of this potential
was recently analyzed in refs. [4, 10, 13].

The magnitude of A and the inflationary parameters can be calculated using the stan-

dard slow-roll expressions given in section 1. For V 1/4
0

& 2⇥ 1016 GeV, observable inflation
occurs close to the minimum where the potential is e↵ectively quadratic as in section 3
(V ' 2Av2�2, where � = � � v denotes the deviation of the field from the minimum). The
inflationary predictions are thus approximately given by eq. (2.3).

For V 1/4
0

. 1016 GeV, assuming inflation takes place with inflaton values below v, the
inflationary parameters are similar to those for new inflation models with V = V

0

[1�(�/µ)4]:
ns ' 1�(3/N), ↵ ' �3/N2. We also consider the case where inflation takes place at inflaton

values above v (see also [4]), in which case for V 1/4
0

. 1016 GeV the inflationary parameters
are similar to those for the quartic potential given by eq. (2.4).

We display the predictions for ns, r and ↵ in Figure 4. The dependence of ns on V
0

is displayed in Figure 5. Numerical results for selected values of V
0

are displayed in Table
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N=50	
   N=60	
  

log
10

(�) v V (�
0

)1/4 (GeV) �
0

�e ns r �↵ (10�4)

solutions below the VEV (� < v)
�12.3 13 1.18⇥ 1016 1.91 11.7 0.947 0.0170 2.67
�12.4 17 1.45⇥ 1016 4.64 15.7 0.960 0.0385 4.06
�12.6 23 1.64⇥ 1016 9.64 21.7 0.966 0.0626 4.82
�12.9 32 1.76⇥ 1016 17.9 30.6 0.968 0.0834 5.14
�13.3 53 1.86⇥ 1016 38.3 51.6 0.968 0.104 5.32
�14.9 300 1.96⇥ 1016 285 299 0.967 0.128 5.44

solutions above the VEV (� > v)
�12.1 1 2.33⇥ 1016 22.3 3.69 0.952 0.258 7.85
�12.2 5 2.28⇥ 1016 24.3 6.81 0.955 0.237 7.02
�12.5 10 2.22⇥ 1016 28.1 11.6 0.959 0.212 6.36
�12.8 19 2.15⇥ 1016 36.2 20.5 0.962 0.186 5.91
�13.3 41 2.08⇥ 1016 57.4 42.5 0.965 0.161 5.65
�14.9 300 1.99⇥ 1016 316 301 0.967 0.137 5.49

V = (1/2)m2�2

1.97⇥ 1016 15.6 1.41 0.967 0.132 5.46

V = (1/4!)��4

�12.1 2.34⇥ 1016 22.2 3.46 0.951 0.260 7.93

Table 3. Higgs potential: The values of parameters for number of e-folds N = 60, in units mP = 1
unless otherwise stated.

In the inflationary scenario with the Higgs potential, we can consider two cases for the
inflaton VEV during inflation. One is that the initial inflaton VEV is smaller than its VEV
at the potential minimum (�

0

< v), and the other is the case with �
0

> v. For each case,
we calculate the inflationary predictions for various values of the inflaton VEV keeping the
number of e-folds fixed. Numerical results are displayed in Table 3. Figure 3 shows the
predictions for ns, r and ↵ with the number of e-folds N = 50 (left curves in each panel) and
N = 60 (right curves in each panel).

For the case with �
0

< v, if the inflaton VEV is large (v � 1 in Planck units) the
inflation potential is dominated by the VEV term and well approximated as the quadratic
potential,

V '
✓
�v2

6

◆
�2 , (3.2)

where � = � � v plays the role of inflaton. Thus the predictions approach the values given
by eq. (2.3), corresponding to the black triangles in Figure 3. On the other hand, for v ⌧ 1,
the potential is of the new inflation or hilltop type:

V ' �

4!
v4

"
1� 2

✓
�

v

◆
2

#
, (3.3)

which implies a strongly red tilted spectrum with suppressed r.
In the other case with �

0

> v, the inflationary predictions for various values of v are
shown as dashed lines in Figure 3. For a small VEV (v ⌧ 1) and �

0

� v, the inflaton
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0
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solutions below the VEV (� < v)
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�12.4 17 1.45⇥ 1016 4.64 15.7 0.960 0.0385 4.06
�12.6 23 1.64⇥ 1016 9.64 21.7 0.966 0.0626 4.82
�12.9 32 1.76⇥ 1016 17.9 30.6 0.968 0.0834 5.14
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�12.2 5 2.28⇥ 1016 24.3 6.81 0.955 0.237 7.02
�12.5 10 2.22⇥ 1016 28.1 11.6 0.959 0.212 6.36
�12.8 19 2.15⇥ 1016 36.2 20.5 0.962 0.186 5.91
�13.3 41 2.08⇥ 1016 57.4 42.5 0.965 0.161 5.65
�14.9 300 1.99⇥ 1016 316 301 0.967 0.137 5.49

V = (1/2)m2�2

1.97⇥ 1016 15.6 1.41 0.967 0.132 5.46

V = (1/4!)��4

�12.1 2.34⇥ 1016 22.2 3.46 0.951 0.260 7.93

Table 3. Higgs potential: The values of parameters for number of e-folds N = 60, in units mP = 1
unless otherwise stated.

In the inflationary scenario with the Higgs potential, we can consider two cases for the
inflaton VEV during inflation. One is that the initial inflaton VEV is smaller than its VEV
at the potential minimum (�

0

< v), and the other is the case with �
0

> v. For each case,
we calculate the inflationary predictions for various values of the inflaton VEV keeping the
number of e-folds fixed. Numerical results are displayed in Table 3. Figure 3 shows the
predictions for ns, r and ↵ with the number of e-folds N = 50 (left curves in each panel) and
N = 60 (right curves in each panel).

For the case with �
0

< v, if the inflaton VEV is large (v � 1 in Planck units) the
inflation potential is dominated by the VEV term and well approximated as the quadratic
potential,

V '
✓
�v2

6

◆
�2 , (3.2)

where � = � � v plays the role of inflaton. Thus the predictions approach the values given
by eq. (2.3), corresponding to the black triangles in Figure 3. On the other hand, for v ⌧ 1,
the potential is of the new inflation or hilltop type:

V ' �

4!
v4

"
1� 2

✓
�

v

◆
2

#
, (3.3)

which implies a strongly red tilted spectrum with suppressed r.
In the other case with �

0

> v, the inflationary predictions for various values of v are
shown as dashed lines in Figure 3. For a small VEV (v ⌧ 1) and �

0

� v, the inflaton
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Quar*c	
  poten*al	
  with	
  non-­‐minimal	
  gravita*onal	
  coupling	
  

V
1/4
0 (GeV) V (�0)1/4(GeV) A(10�14) v �

0

�e ns r �↵(10�4)

solutions below the VEV (� < v)
1.⇥ 1015 1.⇥ 1015 1.60 1.63 0.034 0.898 0.946 10�6 9.11
1.⇥ 1016 9.92⇥ 1015 4.37 12.7 3.38 11.4 0.954 0.008 5.97
1.5⇥ 1016 1.43⇥ 1016 2.41 22.1 10.2 20.8 0.964 0.036 4.87
1.75⇥ 1016 1.58⇥ 1016 1.43 29.4 16.5 28.0 0.967 0.055 4.95
2.⇥ 1016 1.7⇥ 1016 0.812 38.7 25.1 37.3 0.968 0.072 5.09
3.⇥ 1016 1.87⇥ 1016 0.121 93.4 78.6 92.0 0.968 0.107 5.33
6.⇥ 1016 1.95⇥ 1016 0.0059 397. 382. 396. 0.967 0.126 5.43

solutions above the VEV (� > v)
6.⇥ 1016 2.00⇥ 1016 0.0050 414. 430. 416. 0.967 0.138 5.49
3.⇥ 1016 2.05⇥ 1016 0.0623 110. 126. 112. 0.965 0.152 5.57
2.⇥ 1016 2.11⇥ 1016 0.215 53.9 70.6 55.4 0.964 0.171 5.70
1.4⇥ 1016 2.17⇥ 1016 0.496 30.6 48.0 32.2 0.961 0.193 5.93
1.⇥ 1016 2.24⇥ 1016 0.847 19.1 37.3 20.7 0.958 0.217 6.30
6.⇥ 1015 2.31⇥ 1016 1.29 10.3 29.7 12.1 0.954 0.247 7.02
1.⇥ 1015 2.38⇥ 1016 1.20 1.76 23.8 4.64 0.949 0.276 8.24
1.⇥ 1013 2.36⇥ 1016 0.50 0.022 22.6 3.67 0.950 0.269 8.10

Table 4. Coleman-Weinberg potential: The values of parameters for number of e-folds N = 60, in
units mP = 1 unless otherwise stated.

predictions vary from those in �4 inflation (eq. (2.4)) to those in Higgs inflation, depending
on the strength of the non-gravitational coupling [8, 14–16]. Non-minimal �4 inflation can
be embedded into well-motivated particle physics models [15, 27]. Radiative corrections to
the potential have been considered in refs. [8, 14, 15].

The basic action of non-minimal �4 inflation is given in the Jordan frame

Stree

J =

Z
d4x

p
�g


�
✓
1 + ⇠�2

2

◆
R+

1

2
(@�)2 � �

4!
�4

�
, (5.1)

where � is a gauge singlet scalar field, and � is the self-coupling. We rewrite the action in
the Einstein frame as

SE =

Z
d4x

p
�gE


�1

2
RE +

1

2
(@E�E)

2 � VE(�E(�))

�
, (5.2)

where the canonically normalized scalar field has a relation to the original scalar field as

✓
d�

d�

◆�2

=

�
1 + ⇠�2

�
2

1 + (6⇠ + 1)⇠�2

, (5.3)

and the inflation potential in the Einstein frame is

VE(�E(�)) =
1

4!

�(t)�4

(1 + ⇠ �2)2
. (5.4)
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units mP = 1 unless otherwise stated.

predictions vary from those in �4 inflation (eq. (2.4)) to those in Higgs inflation, depending
on the strength of the non-gravitational coupling [8, 14–16]. Non-minimal �4 inflation can
be embedded into well-motivated particle physics models [15, 27]. Radiative corrections to
the potential have been considered in refs. [8, 14, 15].

The basic action of non-minimal �4 inflation is given in the Jordan frame

Stree

J =

Z
d4x

p
�g


�
✓
1 + ⇠�2

2

◆
R+

1

2
(@�)2 � �

4!
�4

�
, (5.1)

where � is a gauge singlet scalar field, and � is the self-coupling. We rewrite the action in
the Einstein frame as

SE =

Z
d4x

p
�gE


�1

2
RE +
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where the canonically normalized scalar field has a relation to the original scalar field as
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1.⇥ 1016 2.24⇥ 1016 0.847 19.1 37.3 20.7 0.958 0.217 6.30
6.⇥ 1015 2.31⇥ 1016 1.29 10.3 29.7 12.1 0.954 0.247 7.02
1.⇥ 1015 2.38⇥ 1016 1.20 1.76 23.8 4.64 0.949 0.276 8.24
1.⇥ 1013 2.36⇥ 1016 0.50 0.022 22.6 3.67 0.950 0.269 8.10

Table 4. Coleman-Weinberg potential: The values of parameters for number of e-folds N = 60, in
units mP = 1 unless otherwise stated.

predictions vary from those in �4 inflation (eq. (2.4)) to those in Higgs inflation, depending
on the strength of the non-gravitational coupling [8, 14–16]. Non-minimal �4 inflation can
be embedded into well-motivated particle physics models [15, 27]. Radiative corrections to
the potential have been considered in refs. [8, 14, 15].

The basic action of non-minimal �4 inflation is given in the Jordan frame

Stree

J =

Z
d4x

p
�g


�
✓
1 + ⇠�2

2

◆
R+

1

2
(@�)2 � �

4!
�4

�
, (5.1)

where � is a gauge singlet scalar field, and � is the self-coupling. We rewrite the action in
the Einstein frame as

SE =

Z
d4x

p
�gE


�1

2
RE +

1

2
(@E�E)

2 � VE(�E(�))

�
, (5.2)

where the canonically normalized scalar field has a relation to the original scalar field as

✓
d�

d�

◆�2

=

�
1 + ⇠�2

�
2

1 + (6⇠ + 1)⇠�2

, (5.3)

and the inflation potential in the Einstein frame is

VE(�E(�)) =
1

4!

�(t)�4

(1 + ⇠ �2)2
. (5.4)
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⇠ log
10

(�) V (�
0

)1/4 (GeV) �
0

�e ns r �↵ (10�4)

10�5 �12.1 2.34⇥ 1016 22.2 3.46 0.951 0.259 7.93
3.98⇥ 10�4 �12.0 2.24⇥ 1016 22.2 3.45 0.954 0.218 7.86

0.001 �11.9 2.12⇥ 1016 22.2 3.43 0.957 0.174 7.65
0.002 �11.8 1.97⇥ 1016 22.1 3.40 0.959 0.131 7.29
0.00398 �11.6 1.79⇥ 1016 22.0 3.34 0.962 0.0884 6.79
0.01 �11.3 1.51⇥ 1016 21.7 3.18 0.965 0.0451 6.12
1.00 �8.55 0.794⇥ 1016 8.52 1.00 0.968 0.00346 5.25
100 �4.62 0.764⇥ 1016 0.920 0.107 0.968 0.00297 5.23

V = (1/4!)��4

�12.1 2.34⇥ 1016 22.2 3.46 0.951 0.260 7.93

Table 5. �4 potential with non-minimal gravitational coupling: The values of parameters for number
of e-folds N = 60, in units mP = 1 unless otherwise stated.
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Figure 6. �4 potential with non-minimal gravitational coupling: ns vs. r (left panel) and ns vs. ↵
(right panel) for various ⇠ values, along with the ns vs. r contours (at the confidence levels of 68%
and 95%) given by the BICEP2 collaboration (Planck+WP+highL+BICEP2). The black points and
triangles are predictions in the textbook quartic and quadratic potential models, respectively. N is
taken as 50 (left curves) and 60 (right curves).

reheating, are taken into account. A precise determination of ns and r should enable one to
distinguish these predictions from those obtained from pure monomial potentials. We also
explored inflation driven by a quartic potential with an additional non-minimal coupling of
the inflaton field to gravity. With plausible values for the new dimensionless parameter ⇠
associated with this coupling, the predictions for ns and r are in good agreement with the
observations. The running of the spectral index in all these models is predicted to be fairly
small, |↵| being of order few⇥10�4–10�3. The tensor spectral index is given by the consis-
tency relation nt = �r/8, which can be measured if r is close to 0.2 [28, 29]. In fact, in this
case even the running of the tensor spectral index can be measured [29].
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the inflaton field at the pivot scale !0 remains below the
position of the hilltop in the WMAP 1-" region. In this
paper we mainly restrict our discussion to the WMAP 1-"
bounds.

For # ! 0 and in the limit # ! 1, the tree level predic-
tions of minimal !4 inflation are modified as follows [21]:

ns ’ 1" 3ð1þ 16#N0=3Þ
N0ð1þ 8#N0Þ

; (24)

r ’ 16

N0ð1þ 8#N0Þ
; (25)

dns
d lnk

’ " 3ð1þ 4ð8#N0Þ=3" 5ð8#N0Þ2 " 2ð8#N0Þ3Þ
N2

0ð1þ 8#N0Þ4

þ r

2

!
16r

3
" ð1" nsÞ

"
: (26)

These results exhibit a reduction in the value of r and an
increase in the value of ns as can be seen in Figs. 1–3. In

particular, from the WMAP 1-" bounds (r& 0:1 and ns &
0:96), we obtain a lower bound of # * 3' 10"3 with
N0 ¼ 60 e-foldings [2,21]. The tree level prediction for
dns
d lnk receives only a tiny correction in this case. Note the
sharp transitions in the predictions of ns and r in the
vicinity of # ) 10"2. This can be understood from the
expression for the inflationary potential given in Eq. (8),
(24), and (25).
In order to discuss nonminimal!4 inflation for # * 1, it

is useful to define the dimensionless field variable c +ffiffiffi
#

p
!=mP. With #, c * 1, the tree level predictions for ns,

r and dns
d lnk are given by

ns ’ 1" 8

3c 2 ¼ 1" 2

N0
; (27)

r ’ 64

3c 4 ¼
12

N2
0

; (28)
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FIG. 5 (color online). r vs ns (first row) and ns and r vs log10ð#Þ (second row) for tree level ($ ¼ 0) nonminimal!4 inflation with the
number of e-foldings N0 ¼ 50 (red dashed curve) and N0 ¼ 60 (green solid curve). The WMAP 1-" (68% confidence level) bounds
are shown in yellow.
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dns
d lnk

’ ! 32

9c 4 ¼ ! 2

N2
0

; (29)

with

!2
R ’ !

"2

!
c 4

768#2

"
’ !

"2

!
N2

0

432#2

"
: (30)

The results are shown as a black curve in Figs. 1–3 labeled
$ ¼ 0. The running of the spectral index dns

d lnk ’ !5# 10!4

is somewhat smaller in comparison to the prediction of
minimal %4 inflation. The requirement that V1=4 & " with

N0 ¼ 60 e-foldings leads to the upper bounds " & 300 and
! & 10!4 (see Fig. 4).
The inclusion of radiative corrections modifies the tree

level results of nonminimal %4 inflation as follows:

ns ’ 1! 8

3c 2

!
1þ 6$=!ð3! 4 lnð ffiffiffi

"
p

c ÞÞ
1! 24$=! lnð ffiffiffi

"
p

c Þ

"
; (31)

r ’ 64

3c 4

!
1! 6$=!ðc 2 þ 4 lnð ffiffiffi

"
p

c ÞÞ
1! 24$=! lnð ffiffiffi

"
p

c Þ

"
2
; (32)

dns
d lnk

’ ! 32

9c 4

!ð1þ 6$=!ð5! 4 lnð ffiffiffi
"

p
c ÞÞÞð1! 6$=!ðc 2 þ 4 lnð ffiffiffi

"
p

c ÞÞÞ
ð1! 24$=! lnð ffiffiffi

"
p

c ÞÞ2
"
; (33)

with

!2
R ’ !

"2

!
c 4

768#2

" ð1! 24$=! lnð ffiffiffi
"

p
c ÞÞ3

ð1! 6$=!ðc 2 þ 4 lnð ffiffiffi
"

p
c ÞÞÞ2 : (34)

These results exhibit a reduction in the values of both r and
ns as can be seen for the curves with " ¼ 200 in Figs. 2 and
3. In particular, for ns ' 0:96 we obtain a lower bound r *
0:002 (see Fig. 3). This may be compared with the result
r * 0:02 for the Higgs potential found in Ref. [20]. The
running of the spectral index changes very slightly from
dns
d lnk (!4# 10!4 to its tree level prediction dns

d lnk (!5#
10!4 within the WMAP 1-& bounds. For " ¼ 200 the
value of c varies between 7 and 9. The requirement that
V1=4 & " together with the WMAP 1-& bounds implies an
upper bound $ & 10!7. The limiting case " ) 1, on the
other hand, shows similar trends for the scalar spectral
index and the tensor-to-scalar ratio as can be seen, for
example, with the " ¼ 10!3 curves in Figs. 2 and 3.

Finally in Figs. 5 and 6 we display the predictions of
nonminimal %4 inflation with the number of e-foldings
N0 ¼ 50 andN0 ¼ 60. A reduction in ns and an increase in

r is observed with a decrease in the number of e-foldings.
This behavior is easy to understand with the help of ana-
lytical approximations derived in Eqs. (27) and (28). The
number of e-foldings N0 ’ 50–60, depends on the reheat-
ing scenario. In our case, reheating occurs through the
Yukawa coupling. Furthermore, the out of equilibrium
decay of the inflaton can give rise to the observed baryon
asymmetry via leptogenesis (either thermal [22] or non-
thermal [23]).
To summarize, we have reconsidered nonminimal !%4

chaotic inflation and imposed the requirement that the
energy scale of inflation remains below the effective UV
cutoff scale, i.e., V1=4 & ". The inflaton field % is a gauge
singlet scalar (say axion) field. In addition to the non-
minimal gravitational coupling, we have also included
the Yukawa coupling of % with a single right-handed
neutrino, leading to radiative corrections which can have
a significant effect. In the large " * 1 limit the require-
ment that V1=4 & " provides the upper bounds " & 102,
! & 10!4 and $ & 10!7, with predictions for ns and r that
are consistent with the WMAP 1-& bounds. For " ) 1, we
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FIG. 6 (color online). V1=4=" and log10ð!Þ vs log10ð"Þ for tree level ($ ¼ 0) nonminimal %4 inflation with the number of e-foldings
N0 ¼ 50 (red dashed curve) and N0 ¼ 60 (green solid curve).
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Figure 2. Upper: RG evolution of λ (left) and of βλ (right) varying Mt, α3(MZ), Mh by
±3σ. Lower: same as above, with more “physical” normalisations. The Higgs quartic coupling
is compared with the top Yukawa and weak gauge coupling through the ratios sign(λ)

√
4|λ|/yt

and sign(λ)
√

8|λ|/g2, which correspond to the ratios of running masses mh/mt and mh/mW , re-
spectively (left). The Higgs quartic β-function is shown in units of its top contribution, βλ(top
contribution) = −3y4t /8π

2 (right). The grey shadings cover values of the RG scale above the
Planck mass MPl ≈ 1.2× 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/

√
8π.

left). Indeed, λ is the only SM coupling that is allowed to change sign during the RG

evolution because it is not multiplicatively renormalised. For all other SM couplings, the

β functions are proportional to their respective couplings and crossing zero is not possible.

This corresponds to the fact that λ = 0 is not a point of enhanced symmetry.

In figure 2 (lower left) we compare the size of λ with the top Yukawa coupling yt and

the gauge coupling g2, choosing a normalisation such that each coupling is equal to the

corresponding particle mass, up to the same proportionality constant. In other words, we

– 16 –
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Figure 1: (a) A typical evolution of λ(µ), and (b) the scalar potential in the singlets extension
of the SM are shown. We take Mt = 173.34 GeV, mH = 125.6 GeV, mS ! 1029 GeV, MR !
1.58 × 1014 GeV, k(MZ) ! 0.325, and yN(MZ) =

√
mνMR/v ! 0.512. In (a), dotted, dashed

and solid curves indicate typical evolutions of λ(µ) in the SM, SM with a singlet scalar (SM+S),
and SM with a single scalar and a right-handed neutrino (SM+S+N), respectively.

• Next is the case of introducing a heavy right-handed neutrino of MR ∼ O(1014) GeV with

a suitable yN , where the evolution of λ(µ) is re-pushed down. Then, µmin ∼ O(1017−18)

GeV and 10−6 < λ(µmin) ! 10−5 can be realized by a fine-tuning of MR. In Fig. 1 (a) and

(b), values of MR and yN(MZ) are taken to reproduce a typical active neutrino mass of

mν = 0.1 eV.

The resultant scalar potential for the inflation is shown in Fig 1 (b). Stress that the experimental

center value of the top mass Mt = 173.34 GeV can be used due to the effects of S and N .

Finally, we show explicit magnitudes of all parameters which realize the successful Higgs

inflation. They are

mS ! 1029.492 GeV, MR ! 1.583687× 1014 GeV, mν = 0.1 eV,

k(MZ) ! 0.3249353, λS(MZ) = 0.1, ξ|µ=h0
= 10.097,

with the experimental center values of

mH = 125.6 GeV, Mt = 173.34 GeV, αs(MZ)
−1 = 0.1184.

They reproduce2

r ! 0.200, ns ! 0.955, N ! 50.6.

2Here we include 2-loop SM contributions to βλ.

5

SM	
  +	
  singlet	
  scalar	
  (S)	
  
	
  	
  	
  	
  	
  	
  	
  +	
  right-­‐handed	
  neutrinos	
  (N)	
  	
  

Haba	
  &	
  Takahashi,	
  1404.4737	
  	
  

PosiNve	
  quarNc	
  coupling	
  	
  
Close	
  to	
  0	
  	
  
Minimum	
  around	
  10^(18)	
  

25/45	
  



Impact	
  of	
  BICEP2	
  result	
  on	
  Higgs	
  Infla*on	
  	
  

Ø Avoiding	
  the	
  instability	
  is	
  not	
  enough	
  	
  
Ø Quar*c	
  coupling	
  is	
  not	
  that	
  small	
  (10^(-­‐12)),	
  	
  
	
  	
  	
  	
  	
  so	
  that	
  r	
  <<	
  0.1	
  by	
  simple	
  analysis	
  	
  

⇠ log
10

(�) V (�
0

)1/4 (GeV) �
0

�e ns r �↵ (10�4)

10�5 �12.1 2.34⇥ 1016 22.2 3.46 0.951 0.259 7.93
3.98⇥ 10�4 �12.0 2.24⇥ 1016 22.2 3.45 0.954 0.218 7.86

0.001 �11.9 2.12⇥ 1016 22.2 3.43 0.957 0.174 7.65
0.002 �11.8 1.97⇥ 1016 22.1 3.40 0.959 0.131 7.29
0.00398 �11.6 1.79⇥ 1016 22.0 3.34 0.962 0.0884 6.79
0.01 �11.3 1.51⇥ 1016 21.7 3.18 0.965 0.0451 6.12
1.00 �8.55 0.794⇥ 1016 8.52 1.00 0.968 0.00346 5.25
100 �4.62 0.764⇥ 1016 0.920 0.107 0.968 0.00297 5.23

V = (1/4!)��4

�12.1 2.34⇥ 1016 22.2 3.46 0.951 0.260 7.93

Table 5. �4 potential with non-minimal gravitational coupling: The values of parameters for number
of e-folds N = 60, in units mP = 1 unless otherwise stated.
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Figure 6. �4 potential with non-minimal gravitational coupling: ns vs. r (left panel) and ns vs. ↵
(right panel) for various ⇠ values, along with the ns vs. r contours (at the confidence levels of 68%
and 95%) given by the BICEP2 collaboration (Planck+WP+highL+BICEP2). The black points and
triangles are predictions in the textbook quartic and quadratic potential models, respectively. N is
taken as 50 (left curves) and 60 (right curves).

reheating, are taken into account. A precise determination of ns and r should enable one to
distinguish these predictions from those obtained from pure monomial potentials. We also
explored inflation driven by a quartic potential with an additional non-minimal coupling of
the inflaton field to gravity. With plausible values for the new dimensionless parameter ⇠
associated with this coupling, the predictions for ns and r are in good agreement with the
observations. The running of the spectral index in all these models is predicted to be fairly
small, |↵| being of order few⇥10�4–10�3. The tensor spectral index is given by the consis-
tency relation nt = �r/8, which can be measured if r is close to 0.2 [28, 29]. In fact, in this
case even the running of the tensor spectral index can be measured [29].
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The observed value of the Higgs boson mass indicates that the Higgs potential becomes small and flat at
the scale around 1017 GeV. Having this fact in mind, we reconsider the Higgs inflation scenario proposed
by Bezrukov and Shaposhnikov. It turns out that the nonminimal coupling ξ of the Higgs squared to the
Ricci scalar can be smaller than 10. For example, ξ ¼ 7 corresponds to the tensor-to-scalar ratio r≃ 0.2,
which is consistent with the recent observation by BICEP2.

DOI: 10.1103/PhysRevLett.112.241301 PACS numbers: 98.80.Cq, 14.80.Bn

The observed value of the Higgs boson mass
125.9" 0.4 GeV [1] indicates that the standard model
(SM) Higgs potential becomes small and flat at the scale
around 1017 GeV; see, e.g., [2–9] for latest analyses [10].
See Fig. 1 for the Higgs potential around that scale for
various values of the top quark mass [11]. We see that
by tuning the top quark mass, we can make the first
derivative at the inflection point arbitrarily small as shown
by the blue (center) line. Note that the required tuning
of the top quark mass is rather strict. The values of Mt
are given to show the amount of tuning and should not be
taken literally [17]. There are several arguments that this
tuning is required by a principle such as the multiple point
principle [20–22], the maximum entropy principle [23,24],
the classical conformality [25–32], and the asymptotic
safety [33].
It is known that this inflection point cannot be used to

achieve a successful inflation [34–36]. Slow-roll condition
jηV j≲ 1 restricts the field value to be very close to the
inflection point. To earn a sufficient e folding N# ≃ 60
within this range of φ#, the first derivative at the inflection
point must be very small, and hence cannot yield the right
amount of the amplitude As ∝ V#=ϵV at φ#.
In Ref. [35], we have discussed a possibility that a new

physics, such as string theory, modifies the Higgs potential
above the scale Λ ∼ 1017 GeV. In this Letter, we pursue
another possibility that the nonminimal coupling of the
Higgs squared to the Ricci scalar, ξφ2R, leads to a
successful inflection point inflation.
The main differences from the ordinary Higgs inflation

scenario [39–43] are the following two points [44]: (i) The
e folding is earned in passing the inflection point, and
hence the relation ϵV ∼ 1=N2

# no longer holds. Therefore,
the scalar-to-tensor ratio r ¼ 16ϵV can be sizable to match
the recent BICEP2 result [49]:

r ¼ 0.2þ0.07
−0.05 (1)

at the 68% C.L. (ii) ξ can be smaller than 10, since the
Higgs quartic coupling λ is small at φ#, due to the tuning
mentioned above.
We start from the same Lagrangian as the ordinary Higgs

inflation [39,41,42,50]. The potential in the Einstein frame
can be obtained from the effective potential

VðφÞ ¼ λðφÞ
4

φ4 (2)

in the flat space, by setting φ ¼ φh with

φh≔
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξh2=M2
P

p ; (3)

where h is the Higgs field in the Jordan frame [53].
The running coupling λðμÞ has a minimum at

μmin ∼ 1017–18 GeV, depending on the Higgs boson mass
[2–9,54]. Around the minimum, λðμÞ can be expanded as

λðμÞ ¼ λmin þ
β2

ð16π2Þ2

"
ln

μ
μmin

#
2

þ β3
ð16π2Þ3

"
ln

μ
μmin

#
3

þ ' ' ' ; (4)
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FIG. 1 (color online). Standard model Higgs potential for the
Higgs boson mass 125.6 GeV.
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4

ond term in {...} in the last line of Eq. (18) is negligible,
one finds a same relation. Then, from ns = 1 − 6ε + 2η
for the spectral index of density perturbation, one finds
η " (ns − 1) /2. This results in r " 3 (ns − 1)2 which
can not be of O(0.1). Therefore, matching BICEP2 re-

sult requires that the term with M2

Pl

2ξh2

βλ

λH
in the last line of

Eq. (18) should play some roles at cosmological scales of
interest. One observation is that, when it is sizable rel-
ative to βλ/λH , d lnβλ/d lnϕ (the curvature of λH with
respect to the renormalization scale or ϕ) can control the
behavior of η and ns. Note that d lnβλ/d lnϕ depends on
βλΦH (the beta-function of λΦH) as well as λΦH . Hence,
the RG-running of λΦH becomes also crucial, and it can
be controlled by model-dependent parameter(s).
Although it is clear enough, we now demonstrate our

argument, using the singlet fermion dark matter model
[6] in order to use the definite full RG-equations involving
λH and λΦH . Fig. 1 shows the dependence of Jordan
frame Higgs potential (Vh) on α and mφ for a fixed λΦH .
We see clearly that for a given mφ(or α) the inflection
point is determined by the interplay of α(or mφ) and
λΦH . Fig. 2 shows the potential of inflaton originated
from Vh having inflection point. Again, it is clear that
by taking a proper ξ matching to µmin via the relation of
Eq. (16), we can adjust the energy scale of inflation.
The e-foldings associated with a cosmological scale λ

is given by [20]

Nλ = 45+ln

(

λ

Mpc

)

+
2

3
ln

(

V 1/4
I

1014GeV

)

+
1

3
ln

(

TR

1010GeV

)

(19)
where TR is the reheating temperature after inflation. At
the benchmark point used in Fig. 2, VI ∼ 9× 1064 GeV4

during inflation. Since radiation dominates the universe
right after inflation in this scenario with ξ ∼ 10 [3], the

reheating occurs around TR ∼ V 1/4
I ∼ 1.7 × 1016GeV.

Based on this, numerical analysis was performed, and the
results are summarized in Table I. As shown in the table,

k∗ ×Mpc Ne h∗/MPl ε∗ η∗ 109PS ns r

0.002 59 0.83 0.00448 −0.02465 2.2639 0.9238 0.0717

0.05 56 0.72 0.00525 −0.00190 2.1777 0.9647 0.0840

TABLE I: Inflation parameters and observables in SFDM sce-
nario for two different scales for mh = 125.5GeV and Mt =
173.2GeV. SFDM parameters are chosen to be λSH = 0.055,
λS = 0.2, λψ = 0.4, α = 0.07422199 and mφ = 500GeV. The
large non-minimal coupling ξ was taken to be ξ = 12.8294
which corresponds to 1.022 × (MPl/µmin)

2.

we can obtain r close to 0.1 with the other observables
consistent with Planck mission data for k∗ = 0.05Mpc−1.
However, for k∗ = 0.002Mpc−1, ns is far smaller than
observation although PS and r matches Planck and BI-
CEP2. In particular, PS and ns behave in opposite way
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FIG. 1: Vh of Jordan frame in SFDM for λSH = 0.055,
λS = 0.2, λψ = 0.4. Top: α = 0.074221, 0.074222, 0.074223
from bottom to top for mφ = 500GeV. Bottom: mφ =
528.26, 528.27, 528.28GeV from bottom to top for α = 0.07.

for those two different scales. Such a small ns can be
understood from the large |η∗| whose behavior depends
on d lnβλ/d lnϕ. This means that in principle we can
adjust η∗ at both of k∗ = 0.002Mpc−1 and 0.05Mpc−1 to
match inflationary observables to data by adjusting ex-
tra parameters (e.g., λS and λ in SFDM), although other
parameters would also have to be adjusted. We do not
aim to do it in this letter since it requires a quite involved
analysis of very sensitive parameters that is beyond the
scope of this letter. On the other hand, this scale de-
pendence can be used to test the model or determining
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where β2 ≃ 0.6 in the SM [35]. The terms proportional to β3
and higher are small in the region of our interest, andwewill
neglect them hereafter. The value of λmin depends on the top
quark mass, and we can set it arbitrarily small by tuning the
top quark mass within the current experimental bound.
For the potential VðφÞ to be monotonically increasing

around the inflection point, it is necessary and sufficient that

λmin ≥ λc≔
β2

ð64π2Þ2
∼ 10−6: (5)

The equality holds when the potential has a plateau. That is,
when we put λmin ¼ λc, the point φinflection ¼ e−1=4μmin ≃
0.8μmin becomes a saddle point with vanishing first and
second derivatives [55].
We set the value of λmin slightly larger than λc to realize

an inflection point inflation, while keeping the potential
above φinflection sufficiently small by the introduction of ξ
in order to evade the problem described above. The three
cases λ > λc, λ ¼ λc, and λ < λc correspond to the red
(upper), blue (middle), and green (lower) curves in Fig. 1,
respectively. An important point here is that the value of φh
in Eq. (3) is saturated to MP=

ffiffiffi
ξ

p
for large values of h

(≫ MP=
ffiffiffi
ξ

p
), and therefore the potential does not grow

rapidly. In order for this saturation to work to avoid too
large ηV , we need φinflection ∼MP=

ffiffiffi
ξ

p
, that is, ξ ∼M2

P=μ
2
min.

As concrete examples, we show our results for several
benchmark points with the parameter choice ξ ¼ 0, 3, 10,
100, and 1000 with λmin ¼ 1.01λc, β2 ¼ 0.6, and μmin ¼
MP=

ffiffiffiffiffi
10

p
in the left panel in Fig. 2; the same figure is

drawn in a linear plot for ξ ¼ 10 in the right panel.
To fit the cosmological data, we can, e.g., take

h$ ¼ 0.896MP, λmin ¼ 1.01λc, μmin ¼ 0.37MP, ξ ¼ 7 to
get r ¼ 16ϵVðh$Þ ¼ 0.19, N$ ¼ 58, Vðφh$ Þ=ϵVðh$Þ ¼
5.0 × 10−7 and nsðh$Þ ¼ 0.955, where

ϵV ¼ M2
P

2VðφhÞ2

"
dh
dχ

dVðφhÞ
dh

#
2

;

ηV ¼ M2
P

VðφhÞ
dh
dχ

d
dh

"
dh
dχ

dVðφhÞ
dh

#
;

(6)

with

dχ
dh

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξð1þ 6ξÞh2=M2

P

p

1þ ξh2=M2
P

: (7)

For the same parameters, the Einstein-frame time evolution
of the Higgs field h is plotted in Fig. 3. We see that
substantial time is spent around the inflection point.
Once the tensor-to-scalar ratio is fixed to be r≃ 0.2,

the slow-roll parameter becomes ϵVðh$Þ≃ 0.013, and the
amplitude As ∝ Vðφh$ Þ=ϵVðh$Þ fixes the potential height
Vðφh$Þ

1=4 ≃ 2 × 1016 GeV. The potential height is deter-
mined in our case to be Vðφh$Þ≃ λðφh$ÞM

4
P=ξ

2, which is
the same as the Higgs inflation. The difference is the value
of λðφh$Þ≃ λmin ≃ λc ∼ 10−6 that allows us to take ξ≲ 10.
In this Letter, we have matched the renormalization

scale in the Einstein frame, as in Eq. (3). If we instead
match it in the Jordan frame [56], i.e., if we set φ ¼ h in
Eq. (2), we obtain the chaotic inflation at h ≫ MP=

ffiffiffi
ξ

p
.

In this region, the canonically normalized field is χ̂ ≃ffiffiffi
6

p
MP lnðhMP=

ffiffiffi
ξ

p
μ2minÞ in the Einstein frame. The poten-

tial for χ̂ becomes quadratic:

V ≃ λminM4
P

4ξ2
þ 1

2

β2M2
P

48ξ2ð16π2Þ2
χ̂2: (8)

We see that by taking ξ ∼ 100, we get the right amount of
the inflaton mass ∼1013 GeV.
Finally, we comment on the unitarity issue in the Higgs

inflation due to the large nonminimal coupling, which
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FIG. 2 (color online). Left: Inflaton potential for ξ ¼ 0, 3, 10, 100, and 1000 from above to below in a log-linear plot. Right: the same
for ξ ¼ 10 in a linear-linear plot.
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FIG. 3 (color online). h vs t in the Einstein frame in Planck
units.
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where β2 ≃ 0.6 in the SM [35]. The terms proportional to β3
and higher are small in the region of our interest, andwewill
neglect them hereafter. The value of λmin depends on the top
quark mass, and we can set it arbitrarily small by tuning the
top quark mass within the current experimental bound.
For the potential VðφÞ to be monotonically increasing

around the inflection point, it is necessary and sufficient that

λmin ≥ λc≔
β2

ð64π2Þ2
∼ 10−6: (5)

The equality holds when the potential has a plateau. That is,
when we put λmin ¼ λc, the point φinflection ¼ e−1=4μmin ≃
0.8μmin becomes a saddle point with vanishing first and
second derivatives [55].
We set the value of λmin slightly larger than λc to realize

an inflection point inflation, while keeping the potential
above φinflection sufficiently small by the introduction of ξ
in order to evade the problem described above. The three
cases λ > λc, λ ¼ λc, and λ < λc correspond to the red
(upper), blue (middle), and green (lower) curves in Fig. 1,
respectively. An important point here is that the value of φh
in Eq. (3) is saturated to MP=

ffiffiffi
ξ

p
for large values of h

(≫ MP=
ffiffiffi
ξ

p
), and therefore the potential does not grow

rapidly. In order for this saturation to work to avoid too
large ηV , we need φinflection ∼MP=

ffiffiffi
ξ

p
, that is, ξ ∼M2

P=μ
2
min.

As concrete examples, we show our results for several
benchmark points with the parameter choice ξ ¼ 0, 3, 10,
100, and 1000 with λmin ¼ 1.01λc, β2 ¼ 0.6, and μmin ¼
MP=

ffiffiffiffiffi
10

p
in the left panel in Fig. 2; the same figure is

drawn in a linear plot for ξ ¼ 10 in the right panel.
To fit the cosmological data, we can, e.g., take

h$ ¼ 0.896MP, λmin ¼ 1.01λc, μmin ¼ 0.37MP, ξ ¼ 7 to
get r ¼ 16ϵVðh$Þ ¼ 0.19, N$ ¼ 58, Vðφh$ Þ=ϵVðh$Þ ¼
5.0 × 10−7 and nsðh$Þ ¼ 0.955, where

ϵV ¼ M2
P

2VðφhÞ2

"
dh
dχ

dVðφhÞ
dh

#
2

;

ηV ¼ M2
P

VðφhÞ
dh
dχ

d
dh

"
dh
dχ

dVðφhÞ
dh

#
;

(6)

with

dχ
dh

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξð1þ 6ξÞh2=M2

P

p

1þ ξh2=M2
P

: (7)

For the same parameters, the Einstein-frame time evolution
of the Higgs field h is plotted in Fig. 3. We see that
substantial time is spent around the inflection point.
Once the tensor-to-scalar ratio is fixed to be r≃ 0.2,

the slow-roll parameter becomes ϵVðh$Þ≃ 0.013, and the
amplitude As ∝ Vðφh$ Þ=ϵVðh$Þ fixes the potential height
Vðφh$Þ

1=4 ≃ 2 × 1016 GeV. The potential height is deter-
mined in our case to be Vðφh$Þ≃ λðφh$ÞM

4
P=ξ

2, which is
the same as the Higgs inflation. The difference is the value
of λðφh$Þ≃ λmin ≃ λc ∼ 10−6 that allows us to take ξ≲ 10.
In this Letter, we have matched the renormalization

scale in the Einstein frame, as in Eq. (3). If we instead
match it in the Jordan frame [56], i.e., if we set φ ¼ h in
Eq. (2), we obtain the chaotic inflation at h ≫ MP=

ffiffiffi
ξ

p
.

In this region, the canonically normalized field is χ̂ ≃ffiffiffi
6

p
MP lnðhMP=

ffiffiffi
ξ

p
μ2minÞ in the Einstein frame. The poten-

tial for χ̂ becomes quadratic:

V ≃ λminM4
P

4ξ2
þ 1

2

β2M2
P

48ξ2ð16π2Þ2
χ̂2: (8)

We see that by taking ξ ∼ 100, we get the right amount of
the inflaton mass ∼1013 GeV.
Finally, we comment on the unitarity issue in the Higgs

inflation due to the large nonminimal coupling, which
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FIG. 2 (color online). Left: Inflaton potential for ξ ¼ 0, 3, 10, 100, and 1000 from above to below in a log-linear plot. Right: the same
for ξ ¼ 10 in a linear-linear plot.
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Higgs	
  Infla*on	
  aser	
  the	
  Higgs	
  discovery	
  &	
  BICEP2	
  result	
  

Ø  Avoiding	
  	
  the	
  instability	
  problem	
  in	
  SM	
  or	
  SM	
  +	
  X+Y..	
  
Ø  Introducing	
  Non-­‐minimal	
  gravita*onal	
  coupling	
  	
  
Ø  Tuning	
  input	
  parameters	
  to	
  realize	
  the	
  inflec*on	
  point	
  
Ø  Arrange	
  ini*al	
  inflaton	
  VEV	
  bit	
  higher	
  

Higgs	
  Infla*on	
  scenario	
  is	
  s*ll	
  a	
  viable	
  scenario	
  by	
  	
  	
  

Doable,	
  but	
  technically	
  complicated……	
  



SUSY	
  extension	
  of	
  the	
  Higgs	
  Infla*on	
  Scenario	
  

Ø  Well-­‐mo*vated	
  to	
  stabilize	
  the	
  EW	
  scale	
  	
  
Ø  Dark	
  maTer	
  candidates	
  (neutralino,	
  gravi*no,	
  

sneutrino	
  etc.	
  
Ø  Quantum	
  correc*ons	
  are	
  more	
  controllable	
  
Ø  Local	
  SUSY	
  (supergravity)	
  includes	
  gravity	
  

SUSY	
  (Supergravity)	
  

Difference	
  from	
  non-­‐SUSY	
  case	
  	
  	
  

Ø Not	
  only	
  one	
  Higgs	
  doublet	
  
Ø D-­‐flat	
  direc*on	
  à	
  inflaton	
  is	
  a	
  linear	
  
combina*on	
  of	
  Higgses	
  &	
  other	
  scalars	
  	
  

Ø Not	
  easy	
  to	
  make	
  inflaton	
  poten*al	
  flat	
  



Simple	
  realiza*on	
  of	
  Higgs	
  infla*on	
  in	
  SUGRA	
  

NMSSM	
   Ferrara,	
  Kallosh,	
  Linde,	
  Marrani	
  &	
  Van	
  
Proeyen,	
  Phys.Rev.	
  D82	
  (2010)	
  045003	
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  framework	
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⇠ log
10

(�) V (�
0

)1/4 (GeV) �
0

�e ns r �↵ (10�4)

10�5 �12.1 2.34⇥ 1016 22.2 3.46 0.951 0.259 7.93
3.98⇥ 10�4 �12.0 2.24⇥ 1016 22.2 3.45 0.954 0.218 7.86

0.001 �11.9 2.12⇥ 1016 22.2 3.43 0.957 0.174 7.65
0.002 �11.8 1.97⇥ 1016 22.1 3.40 0.959 0.131 7.29
0.00398 �11.6 1.79⇥ 1016 22.0 3.34 0.962 0.0884 6.79
0.01 �11.3 1.51⇥ 1016 21.7 3.18 0.965 0.0451 6.12
1.00 �8.55 0.794⇥ 1016 8.52 1.00 0.968 0.00346 5.25
100 �4.62 0.764⇥ 1016 0.920 0.107 0.968 0.00297 5.23

V = (1/4!)��4

�12.1 2.34⇥ 1016 22.2 3.46 0.951 0.260 7.93

Table 5. �4 potential with non-minimal gravitational coupling: The values of parameters for number
of e-folds N = 60, in units mP = 1 unless otherwise stated.
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Figure 6. �4 potential with non-minimal gravitational coupling: ns vs. r (left panel) and ns vs. ↵
(right panel) for various ⇠ values, along with the ns vs. r contours (at the confidence levels of 68%
and 95%) given by the BICEP2 collaboration (Planck+WP+highL+BICEP2). The black points and
triangles are predictions in the textbook quartic and quadratic potential models, respectively. N is
taken as 50 (left curves) and 60 (right curves).

reheating, are taken into account. A precise determination of ns and r should enable one to
distinguish these predictions from those obtained from pure monomial potentials. We also
explored inflation driven by a quartic potential with an additional non-minimal coupling of
the inflaton field to gravity. With plausible values for the new dimensionless parameter ⇠
associated with this coupling, the predictions for ns and r are in good agreement with the
observations. The running of the spectral index in all these models is predicted to be fairly
small, |↵| being of order few⇥10�4–10�3. The tensor spectral index is given by the consis-
tency relation nt = �r/8, which can be measured if r is close to 0.2 [28, 29]. In fact, in this
case even the running of the tensor spectral index can be measured [29].
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Type	
  I	
  seesaw	
  case:	
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  seesaw	
  case:	
  

Structure	
  for	
  the	
  infla*ons	
  are	
  the	
  same	
  

L =

Z
d4✓⌃†⌃ (�3�) (15)

+

Z
d2✓⌃3W + h.c.

�
(16)

⌃ = 1 + ✓2F⌃ (17)

�1

2
�R+ kinetic terms (18)

�
X

i

���
@W

@�i

���
2

(19)

� = 1� 1

3

�
|Hu|2 + |L|2 + |N c|2

�
+

�

2
(HuL+ h.c.) (20)

W = yDN
cHuL+

1

2
MN cN c (21)

� = 1� 1

3

�
|Hu|2 + |L|2 + tr[|T c|2]

�
+

�

2
(HuL+ h.c.) (22)

W = yDHuT
cL+

1

2
Mtr [T cT c] (23)

Hu =
1

2

✓
0
'

◆
, (24)

Hd ! L =
1

2

✓
'
0

◆
(25)

�1

2

�
1 + ⇠'2

�
R+

1

2
(@')2 (26)

S = 0 (27)

V =
y2

16
'4 (28)

⇠ =
�

4
� 1

6
(29)

y2 $ � (30)

S ! N c (31)

T c (32)

m⌫ =
y2

M
v2u ' y2

M
v2 = �m2

23 (33)

2

L =

Z
d4✓⌃†⌃ (�3�) (15)

+

Z
d2✓⌃3W + h.c.

�
(16)

⌃ = 1 + ✓2F⌃ (17)

�1

2
�R+ kinetic terms (18)

�
X

i

���
@W

@�i

���
2

(19)

� = 1� 1

3

�
|Hu|2 + |L|2 + |N c|2

�
+

�

2
(HuL+ h.c.) (20)

W = yDN
cHuL+

1

2
MN cN c (21)

� = 1� 1

3

�
|Hu|2 + |L|2 + tr[|T c|2]

�
+

�

2
(HuL+ h.c.) (22)

W = yDHuT
cL+

1

2
Mtr [T cT c] (23)

Hu =
1

2

✓
0
'

◆
, (24)

Hd ! L =
1

2

✓
'
0

◆
(25)

�1

2

�
1 + ⇠'2

�
R+

1

2
(@')2 (26)

S = 0 (27)

V =
y2

16
'4 (28)

⇠ =
�

4
� 1

6
(29)

y2 $ � (30)

S ! N c (31)

T c (32)

m⌫ =
y2

M
v2u ' y2

M
v2 = �m2

23 (33)

2



What	
  is	
  interes*ng?	
  	
  

Ø  Seesaw	
  mechanism:	
  	
  	
  

L =

Z
d4✓⌃†⌃ (�3�) (15)

+

Z
d2✓⌃3W + h.c.

�
(16)

⌃ = 1 + ✓2F⌃ (17)

�1

2
�R+ kinetic terms (18)

�
X

i

���
@W

@�i

���
2

(19)

� = 1� 1

3

�
|Hu|2 + |L|2 + |N c|2

�
+

�

2
(HuL+ h.c.) (20)

W = yDN
cHuL+

1

2
MN cN c (21)

� = 1� 1

3

�
|Hu|2 + |L|2 + tr[|T c|2]

�
+

�

2
(HuL+ h.c.) (22)

W = yDHuT
cL+

1

2
Mtr [T cT c] (23)

Hu =
1

2

✓
0
'

◆
, (24)

Hd ! L =
1

2

✓
'
0

◆
(25)

�1

2

�
1 + ⇠'2

�
R+

1

2
(@')2 (26)

S = 0 (27)

V =
y2

16
'4 (28)

⇠ =
�

4
� 1

6
(29)

y2 $ � (30)

S ! N c (31)

T c (32)

m⌫ =
y2D
M

v2u ' y2D
M

v2 (33)

2

In	
  normal	
  hierarchy,	
  we	
  may	
  use	
  	
  

L =

Z
d4✓⌃†⌃ (�3�) (15)

+

Z
d2✓⌃3W + h.c.

�
(16)

⌃ = 1 + ✓2F⌃ (17)

�1

2
�R+ kinetic terms (18)

�
X

i

���
@W

@�i

���
2

(19)

� = 1� 1

3

�
|Hu|2 + |L|2 + |N c|2

�
+

�

2
(HuL+ h.c.) (20)

W = yDN
cHuL+

1

2
MN cN c (21)

� = 1� 1

3

�
|Hu|2 + |L|2 + tr[|T c|2]

�
+

�

2
(HuL+ h.c.) (22)

W = yDHuT
cL+

1

2
Mtr [T cT c] (23)

Hu =
1

2

✓
0
'

◆
, (24)

Hd ! L =
1

2

✓
'
0

◆
(25)

�1

2

�
1 + ⇠'2

�
R+

1

2
(@')2 (26)

S = 0 (27)

V =
y2

16
'4 (28)

⇠ =
�

4
� 1

6
(29)

y2 $ � (30)

S ! N c (31)

T c (32)

m⌫ =
y2D
M

v2u ' y2D
M

v2 (33)

m2
⌫ = �m2

23 = 2.32⇥ 10�3 eV2 (34)

2

	
  so	
  that	
  	
  

2

is the right-handed neutrino triplet superfield. With odd
R-parity assigned to N c or T c, the superpotential pre-
serves the R-parity in both cases. The Majorana masses
of the right-handed neutrinos M and the Dirac Yukawa
coupling yD are related by the seesaw relation

mν = mT
DM−1mD, (4)

where mD = yD〈H0
u〉 and 〈H0

u〉 # 174 GeV for moderate
tanβ. While realistic seesaw requires at least two fami-
lies of the right-handed neutrinos, we will be interested
mainly in the outcome of inflation and consider a sim-
plified one family case2. Since the inflationary model is
essentially the same for both type I and type III seesaw,
we will describe in the case of the type I model below.
Estimating the mass scale of the light (left-handed) neu-
trinos as m2

ν ≈ ∆2
32 = 2.32× 10−3 eV2 where the data of

[19] is used, the seesaw relation (4) reads

yD =

(

M

6.29× 1014 GeV

)1/2

. (5)

Inflation is assumed to take place along one of the D-
flat directions L-Hu, which is parametrized by a field ϕ
so that

L =
1√
2

(

ϕ
0

)

, Hu =
1√
2

(

0
ϕ

)

. (6)

We consider supergravity embedding with slightly non-
canonical Kähler potential K = −3Φ, where

Φ = 1−
1

3

(

|N c|2 + |ϕ|2
)

+
γ

4

(

ϕ2 + c.c.
)

+
ζ

3
|N c|4. (7)

Here γ and ζ are real parameters. The third term on the
right hand side violates the R-parity; the consequence of
this will be discussed in Section III. We will use the unit
in which the reduced Planck scale MP = (8πG)−1/2 =
2.44× 1018 GeV is set to unity. During inflation only the
fields N c and ϕ are important and the superpotential
simplifies to

Winf =
1

2
MN cN c +

1

2
yDN cϕ2. (8)

From (7) and (8) the Lagrangian of the model can be ob-
tained following the standard supergravity computations
[15, 16].
The dynamics of the resulting system is complicated in

general, with a nontrivial inflaton trajectory in multidi-
mensional field space. It can be shown however that with
mild assumptions the model simplifies to give single-field
slow roll inflation [15, 16]. This is due to the non-zero
quartic term in (7), which makes the N c field massive,

2 See [16] for a detailed description of the HLI with two families
(the minimal seesaw case) in type I seesaw.

ensuring the inflaton trajectory to lie along the ϕ direc-
tion. Furthermore, the scalar potential can be shown to
be stable along the real axis of the ϕ field so that the
phase direction of ϕ does not participate in the inflation-
ary dynamics. The model then involves only one real
scalar field and the Lagrangian becomes

LJ =
√
−gJ

{

1

2
ΦRJ −

1

2
gµνJ ∂µχ∂νχ− VJ

}

, (9)

where the subscript J stands for the Jordan frame and

χ =
√
2Reϕ, VJ =

|yD|2

16
χ4. (10)

Here the field is understood to represent the scalar com-
ponent. Note that Φ of (7) is now written as

Φ = 1 + ξχ2, ξ =
γ

4
−

1

6
. (11)

This is the nonminimally coupled λφ4 model [20]. The
Higgs inflation model [3, 4] also has the same structure.
An essential feature of the HLI model here is that the
inflaton self coupling is the square of the Yukawa coupling
yD which is determined by the seesaw relation (4). In this
supersymmetric model the effects of renormalization on
the Yukawa coupling yD and the nonminimal curvature
coupling ξ are negligibly small [15, 16].
The dynamics of inflation and the prediction of the

model can be studied conveniently in the Einstein frame,
by Weyl-rescaling the metric gEµν = ΦgJµν and redefining
the field χ into the canonically normalized one χ̂ in the
Einstein frame,

dχ̂ =

√

1 + ξχ2 + 6ξ2χ2

1 + ξχ2
dχ. (12)

The Lagrangian in the Einstein frame is then

LE =
√
−gE

{

1

2
RE −

1

2
gµνE ∂µχ̂∂νχ̂− VE

}

, (13)

where the scalar potential is

VE =
VJ

Φ2
. (14)

The slow roll parameters are defined in the usual way,

ε =
1

2

(

1

VE

dVE

dχ̂

)2

, η =
1

VE

d2VE

dχ̂2
. (15)

The model contains two tuneable parameters yD and
ξ, which are related to M and γ through (5) and (11).
The value of ξ will be fixed by the amplitude of the CMB
power spectrum as follows. The end of the slow roll is
characterized by the condition that either of the slow roll
parameters are not small anymore; we use max(ε, |η|) = 1
and denote the value of the inflaton obtained from this
condition as χ∗. We then follow the inflaton trajectory
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FIG. 1: The spectral index ns and the tensor-to-scalar ratio
r of the Higgs-lepton inflation (HLI), for the e-foldings Ne =
40, 50, 60 and 70. The nonminimal curvature coupling ξ
is fixed by the amplitude of the density fluctuations. The
numbers shown alongside the plot are the seesaw scale M
measured in GeV. The 68% and 95% CL contours from the
BICEP2 experiment [1] are shown in the background. The
prediction of the minimally coupledm2φ2 chaotic model [ns =
1− 2/(Ne + 1

2
), r = 4(1− ns), the red dotted line] and of the

minimally coupled λφ4 model [ns = 1−3/(Ne+ 3

2
), r = 16

3
(1−

ns), the blue dashed line], are also shown for comparison.

backward in time for Ne e-foldings, and identify the in-
flaton value χk that corresponds to the horizon exit of
the comoving CMB scale k, using the relation Ne =
∫ χk

χ∗

dχVE(dχ̂/dχ)/(dVE/dχ̂). Then the power spectrum

of the curvature perturbation PR = VE/24π2ε at the
CMB scale χ = χk is obtained for a given set of Ne, yD,
ξ. To compare this with the observed CMB amplitude,
we use for definiteness the value As(k0) = 2.215× 10−9

from the Planck satellite experiment [2], with the pivot

scale at k0 = 0.05 Mpc−1. Here, As(k) =
k3

2π2PR(k) and
PR(k) is the Fourier transform of PR. Fixing ξ by this
procedure we obtain the prediction of the CMB spec-
trum for a given number of e-foldings Ne and a value of
the Yukawa coupling yD. The prediction for the scalar
spectral index ns = 1 − 6ε+ 2η and the tensor-to-scalar
ratio r ≡ Pgw/PR = 16ε are plotted in Fig.1. Instead
of the Yukawa coupling yD, the seesaw scale M is shown
in the figure. In the background we also indicate the
68% and 95% CL constraint contours from the BICEP2
experiment [1].

An important feature of the HLI model is that the
inflaton quartic self coupling is given by the square of
the Dirac Yukawa coupling, which in turn is related to
the mass scale of the right-handed (s)neutrinos by the
seesaw relation (5). There is a lower bound of the Yukawa
coupling, which is determined in the minimal coupling
limit ξ → 0 by the CMB amplitude. One can see from
Fig.1 that the constraints from the BICEP2 experiment
yield the seesaw mass scale in the range between a few

Ne M (GeV) |yD| ξ ns r

751 1.09× 10−6 5.89 × 10−4 0.946 0.250
50 927 1.21× 10−6 1.29 × 10−3 0.948 0.203

1.63× 103 1.61× 10−6 4.00 × 10−3 0.954 0.118
2.37× 103 1.94× 10−6 6.86 × 10−3 0.956 0.0822

355 7.52× 10−7 0 0.951 0.260
60 391 7.89× 10−7 2.09 × 10−4 0.953 0.236

795 1.12× 10−6 2.49 × 10−3 0.960 0.117
1.10 × 103 1.32 × 10−6 4.19 × 10−3 0.962 0.0855

TABLE I: The values of the Yukawa coupling |yD|, the non-
minimal curvature coupling ξ, the scalar spectral index ns and
the tensor-to-scalar ratio r of the HLI model with e-foldings
50 and 60. The chosen seesaw scales M correspond to the
68% and 95% CL contours of the BICEP2 experiment.

hundred GeV and a few TeV. More concretely we find

927 GeV < M < 1.62 TeV (68% CL)

751 GeV < M < 2.37 TeV (95% CL) (16)

for Ne = 50 and

391 GeV < M < 795 GeV (68% CL)

355 GeV < M < 1.10 TeV (95% CL) (17)

for Ne = 60. In Table I the values of the Dirac Yukawa
coupling |yD|, the nonminimal curvature coupling ξ, the
scalar spectral index ns and the tensor-to-scalar ratio r
for these 68% and 95% threshold cases are shown. Note
that the small inflaton quartic coupling ∼ 10−12 is not
unnaturally small, since it is the square of the Dirac
Yukawa coupling. In fact the Dirac Yukawa coupling of
yD ∼ 10−6 is in the same order as the electron Yukawa
coupling ye.

III. PHYSICS IMPLIED BY THE TEV SEESAW
SCALE

We now turn to discuss various features of the HLI
scenario when the seesaw scale is in the range (16), (17).

A. Reheating temperature

The inflaton ϕ of the HLI model is the L-Hu flat direc-
tion of the supersymmetric seesaw model. The dominant
decay channel of the Higgs component is ϕ → bb̄. In
the perturbative reheating scenario, the upper bound of
the reheating temperature is then estimated using the
decay rate as Trh ! 107 GeV. Parametric resonance ef-
fects and/or contributions from other decay channels may
slightly alter this estimate. Allowing for the redshift be-
fore the Universe reaches thermalization, we evaluate the
reheating temperature of this model to be

Trh ≈ 105 − 107 GeV. (18)
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FIG. 1: The spectral index ns and the tensor-to-scalar ratio
r of the Higgs-lepton inflation (HLI), for the e-foldings Ne =
40, 50, 60 and 70. The nonminimal curvature coupling ξ
is fixed by the amplitude of the density fluctuations. The
numbers shown alongside the plot are the seesaw scale M
measured in GeV. The 68% and 95% CL contours from the
BICEP2 experiment [1] are shown in the background. The
prediction of the minimally coupledm2φ2 chaotic model [ns =
1− 2/(Ne + 1

2
), r = 4(1− ns), the red dotted line] and of the

minimally coupled λφ4 model [ns = 1−3/(Ne+ 3

2
), r = 16

3
(1−

ns), the blue dashed line], are also shown for comparison.

backward in time for Ne e-foldings, and identify the in-
flaton value χk that corresponds to the horizon exit of
the comoving CMB scale k, using the relation Ne =
∫ χk

χ∗

dχVE(dχ̂/dχ)/(dVE/dχ̂). Then the power spectrum

of the curvature perturbation PR = VE/24π2ε at the
CMB scale χ = χk is obtained for a given set of Ne, yD,
ξ. To compare this with the observed CMB amplitude,
we use for definiteness the value As(k0) = 2.215× 10−9

from the Planck satellite experiment [2], with the pivot

scale at k0 = 0.05 Mpc−1. Here, As(k) =
k3

2π2PR(k) and
PR(k) is the Fourier transform of PR. Fixing ξ by this
procedure we obtain the prediction of the CMB spec-
trum for a given number of e-foldings Ne and a value of
the Yukawa coupling yD. The prediction for the scalar
spectral index ns = 1 − 6ε+ 2η and the tensor-to-scalar
ratio r ≡ Pgw/PR = 16ε are plotted in Fig.1. Instead
of the Yukawa coupling yD, the seesaw scale M is shown
in the figure. In the background we also indicate the
68% and 95% CL constraint contours from the BICEP2
experiment [1].

An important feature of the HLI model is that the
inflaton quartic self coupling is given by the square of
the Dirac Yukawa coupling, which in turn is related to
the mass scale of the right-handed (s)neutrinos by the
seesaw relation (5). There is a lower bound of the Yukawa
coupling, which is determined in the minimal coupling
limit ξ → 0 by the CMB amplitude. One can see from
Fig.1 that the constraints from the BICEP2 experiment
yield the seesaw mass scale in the range between a few

Ne M (GeV) |yD| ξ ns r

751 1.09× 10−6 5.89 × 10−4 0.946 0.250
50 927 1.21× 10−6 1.29 × 10−3 0.948 0.203

1.63× 103 1.61× 10−6 4.00 × 10−3 0.954 0.118
2.37× 103 1.94× 10−6 6.86 × 10−3 0.956 0.0822

355 7.52× 10−7 0 0.951 0.260
60 391 7.89× 10−7 2.09 × 10−4 0.953 0.236

795 1.12× 10−6 2.49 × 10−3 0.960 0.117
1.10 × 103 1.32 × 10−6 4.19 × 10−3 0.962 0.0855

TABLE I: The values of the Yukawa coupling |yD|, the non-
minimal curvature coupling ξ, the scalar spectral index ns and
the tensor-to-scalar ratio r of the HLI model with e-foldings
50 and 60. The chosen seesaw scales M correspond to the
68% and 95% CL contours of the BICEP2 experiment.

hundred GeV and a few TeV. More concretely we find

927 GeV < M < 1.62 TeV (68% CL)

751 GeV < M < 2.37 TeV (95% CL) (16)

for Ne = 50 and

391 GeV < M < 795 GeV (68% CL)

355 GeV < M < 1.10 TeV (95% CL) (17)

for Ne = 60. In Table I the values of the Dirac Yukawa
coupling |yD|, the nonminimal curvature coupling ξ, the
scalar spectral index ns and the tensor-to-scalar ratio r
for these 68% and 95% threshold cases are shown. Note
that the small inflaton quartic coupling ∼ 10−12 is not
unnaturally small, since it is the square of the Dirac
Yukawa coupling. In fact the Dirac Yukawa coupling of
yD ∼ 10−6 is in the same order as the electron Yukawa
coupling ye.

III. PHYSICS IMPLIED BY THE TEV SEESAW
SCALE

We now turn to discuss various features of the HLI
scenario when the seesaw scale is in the range (16), (17).

A. Reheating temperature

The inflaton ϕ of the HLI model is the L-Hu flat direc-
tion of the supersymmetric seesaw model. The dominant
decay channel of the Higgs component is ϕ → bb̄. In
the perturbative reheating scenario, the upper bound of
the reheating temperature is then estimated using the
decay rate as Trh ! 107 GeV. Parametric resonance ef-
fects and/or contributions from other decay channels may
slightly alter this estimate. Allowing for the redshift be-
fore the Universe reaches thermalization, we evaluate the
reheating temperature of this model to be

Trh ≈ 105 − 107 GeV. (18)
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FIG. 1: The spectral index ns and the tensor-to-scalar ratio
r of the Higgs-lepton inflation (HLI), for the e-foldings Ne =
40, 50, 60 and 70. The nonminimal curvature coupling ξ
is fixed by the amplitude of the density fluctuations. The
numbers shown alongside the plot are the seesaw scale M
measured in GeV. The 68% and 95% CL contours from the
BICEP2 experiment [1] are shown in the background. The
prediction of the minimally coupledm2φ2 chaotic model [ns =
1− 2/(Ne + 1

2
), r = 4(1− ns), the red dotted line] and of the

minimally coupled λφ4 model [ns = 1−3/(Ne+ 3

2
), r = 16

3
(1−

ns), the blue dashed line], are also shown for comparison.

backward in time for Ne e-foldings, and identify the in-
flaton value χk that corresponds to the horizon exit of
the comoving CMB scale k, using the relation Ne =
∫ χk

χ∗

dχVE(dχ̂/dχ)/(dVE/dχ̂). Then the power spectrum

of the curvature perturbation PR = VE/24π2ε at the
CMB scale χ = χk is obtained for a given set of Ne, yD,
ξ. To compare this with the observed CMB amplitude,
we use for definiteness the value As(k0) = 2.215× 10−9

from the Planck satellite experiment [2], with the pivot

scale at k0 = 0.05 Mpc−1. Here, As(k) =
k3

2π2PR(k) and
PR(k) is the Fourier transform of PR. Fixing ξ by this
procedure we obtain the prediction of the CMB spec-
trum for a given number of e-foldings Ne and a value of
the Yukawa coupling yD. The prediction for the scalar
spectral index ns = 1 − 6ε+ 2η and the tensor-to-scalar
ratio r ≡ Pgw/PR = 16ε are plotted in Fig.1. Instead
of the Yukawa coupling yD, the seesaw scale M is shown
in the figure. In the background we also indicate the
68% and 95% CL constraint contours from the BICEP2
experiment [1].

An important feature of the HLI model is that the
inflaton quartic self coupling is given by the square of
the Dirac Yukawa coupling, which in turn is related to
the mass scale of the right-handed (s)neutrinos by the
seesaw relation (5). There is a lower bound of the Yukawa
coupling, which is determined in the minimal coupling
limit ξ → 0 by the CMB amplitude. One can see from
Fig.1 that the constraints from the BICEP2 experiment
yield the seesaw mass scale in the range between a few

Ne M (GeV) |yD| ξ ns r

751 1.09× 10−6 5.89 × 10−4 0.946 0.250
50 927 1.21× 10−6 1.29 × 10−3 0.948 0.203

1.63× 103 1.61× 10−6 4.00 × 10−3 0.954 0.118
2.37× 103 1.94× 10−6 6.86 × 10−3 0.956 0.0822

355 7.52× 10−7 0 0.951 0.260
60 391 7.89× 10−7 2.09 × 10−4 0.953 0.236

795 1.12× 10−6 2.49 × 10−3 0.960 0.117
1.10 × 103 1.32 × 10−6 4.19 × 10−3 0.962 0.0855

TABLE I: The values of the Yukawa coupling |yD|, the non-
minimal curvature coupling ξ, the scalar spectral index ns and
the tensor-to-scalar ratio r of the HLI model with e-foldings
50 and 60. The chosen seesaw scales M correspond to the
68% and 95% CL contours of the BICEP2 experiment.

hundred GeV and a few TeV. More concretely we find

927 GeV < M < 1.62 TeV (68% CL)

751 GeV < M < 2.37 TeV (95% CL) (16)

for Ne = 50 and

391 GeV < M < 795 GeV (68% CL)

355 GeV < M < 1.10 TeV (95% CL) (17)

for Ne = 60. In Table I the values of the Dirac Yukawa
coupling |yD|, the nonminimal curvature coupling ξ, the
scalar spectral index ns and the tensor-to-scalar ratio r
for these 68% and 95% threshold cases are shown. Note
that the small inflaton quartic coupling ∼ 10−12 is not
unnaturally small, since it is the square of the Dirac
Yukawa coupling. In fact the Dirac Yukawa coupling of
yD ∼ 10−6 is in the same order as the electron Yukawa
coupling ye.

III. PHYSICS IMPLIED BY THE TEV SEESAW
SCALE

We now turn to discuss various features of the HLI
scenario when the seesaw scale is in the range (16), (17).

A. Reheating temperature

The inflaton ϕ of the HLI model is the L-Hu flat direc-
tion of the supersymmetric seesaw model. The dominant
decay channel of the Higgs component is ϕ → bb̄. In
the perturbative reheating scenario, the upper bound of
the reheating temperature is then estimated using the
decay rate as Trh ! 107 GeV. Parametric resonance ef-
fects and/or contributions from other decay channels may
slightly alter this estimate. Allowing for the redshift be-
fore the Universe reaches thermalization, we evaluate the
reheating temperature of this model to be

Trh ≈ 105 − 107 GeV. (18)

Ø  Current	
  LHC	
  bound	
  on	
  triplet	
  mass,	
  M	
  >	
  254	
  GeV,	
  	
  
	
  	
  	
  	
  	
  (95%	
  CL,	
  ATLAS	
  collabora*on	
  with	
  8	
  TeV	
  LHC,	
  5.8/{)	
  	
  
	
  
Ø  Search	
  reach	
  of	
  14	
  TeV	
  LHC	
  is	
  M=750	
  GeV	
  

del	
  Aguila	
  &	
  Aguilar-­‐Saavedra,	
  NPB	
  813	
  (2009)	
  22	
  



More	
  on	
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  phenomenology	
  

Ø Rehea*ng	
  through	
  Higgs	
  boson	
  decay,	
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FIG. 1: The spectral index ns and the tensor-to-scalar ratio
r of the Higgs-lepton inflation (HLI), for the e-foldings Ne =
40, 50, 60 and 70. The nonminimal curvature coupling ξ
is fixed by the amplitude of the density fluctuations. The
numbers shown alongside the plot are the seesaw scale M
measured in GeV. The 68% and 95% CL contours from the
BICEP2 experiment [1] are shown in the background. The
prediction of the minimally coupledm2φ2 chaotic model [ns =
1− 2/(Ne + 1

2
), r = 4(1− ns), the red dotted line] and of the

minimally coupled λφ4 model [ns = 1−3/(Ne+ 3

2
), r = 16

3
(1−

ns), the blue dashed line], are also shown for comparison.

backward in time for Ne e-foldings, and identify the in-
flaton value χk that corresponds to the horizon exit of
the comoving CMB scale k, using the relation Ne =
∫ χk

χ∗

dχVE(dχ̂/dχ)/(dVE/dχ̂). Then the power spectrum

of the curvature perturbation PR = VE/24π2ε at the
CMB scale χ = χk is obtained for a given set of Ne, yD,
ξ. To compare this with the observed CMB amplitude,
we use for definiteness the value As(k0) = 2.215× 10−9

from the Planck satellite experiment [2], with the pivot

scale at k0 = 0.05 Mpc−1. Here, As(k) =
k3

2π2PR(k) and
PR(k) is the Fourier transform of PR. Fixing ξ by this
procedure we obtain the prediction of the CMB spec-
trum for a given number of e-foldings Ne and a value of
the Yukawa coupling yD. The prediction for the scalar
spectral index ns = 1 − 6ε+ 2η and the tensor-to-scalar
ratio r ≡ Pgw/PR = 16ε are plotted in Fig.1. Instead
of the Yukawa coupling yD, the seesaw scale M is shown
in the figure. In the background we also indicate the
68% and 95% CL constraint contours from the BICEP2
experiment [1].

An important feature of the HLI model is that the
inflaton quartic self coupling is given by the square of
the Dirac Yukawa coupling, which in turn is related to
the mass scale of the right-handed (s)neutrinos by the
seesaw relation (5). There is a lower bound of the Yukawa
coupling, which is determined in the minimal coupling
limit ξ → 0 by the CMB amplitude. One can see from
Fig.1 that the constraints from the BICEP2 experiment
yield the seesaw mass scale in the range between a few

Ne M (GeV) |yD| ξ ns r

751 1.09× 10−6 5.89 × 10−4 0.946 0.250
50 927 1.21× 10−6 1.29 × 10−3 0.948 0.203

1.63× 103 1.61× 10−6 4.00 × 10−3 0.954 0.118
2.37× 103 1.94× 10−6 6.86 × 10−3 0.956 0.0822

355 7.52× 10−7 0 0.951 0.260
60 391 7.89× 10−7 2.09 × 10−4 0.953 0.236

795 1.12× 10−6 2.49 × 10−3 0.960 0.117
1.10 × 103 1.32 × 10−6 4.19 × 10−3 0.962 0.0855

TABLE I: The values of the Yukawa coupling |yD|, the non-
minimal curvature coupling ξ, the scalar spectral index ns and
the tensor-to-scalar ratio r of the HLI model with e-foldings
50 and 60. The chosen seesaw scales M correspond to the
68% and 95% CL contours of the BICEP2 experiment.

hundred GeV and a few TeV. More concretely we find

927 GeV < M < 1.62 TeV (68% CL)

751 GeV < M < 2.37 TeV (95% CL) (16)

for Ne = 50 and

391 GeV < M < 795 GeV (68% CL)

355 GeV < M < 1.10 TeV (95% CL) (17)

for Ne = 60. In Table I the values of the Dirac Yukawa
coupling |yD|, the nonminimal curvature coupling ξ, the
scalar spectral index ns and the tensor-to-scalar ratio r
for these 68% and 95% threshold cases are shown. Note
that the small inflaton quartic coupling ∼ 10−12 is not
unnaturally small, since it is the square of the Dirac
Yukawa coupling. In fact the Dirac Yukawa coupling of
yD ∼ 10−6 is in the same order as the electron Yukawa
coupling ye.

III. PHYSICS IMPLIED BY THE TEV SEESAW
SCALE

We now turn to discuss various features of the HLI
scenario when the seesaw scale is in the range (16), (17).

A. Reheating temperature

The inflaton ϕ of the HLI model is the L-Hu flat direc-
tion of the supersymmetric seesaw model. The dominant
decay channel of the Higgs component is ϕ → bb̄. In
the perturbative reheating scenario, the upper bound of
the reheating temperature is then estimated using the
decay rate as Trh ! 107 GeV. Parametric resonance ef-
fects and/or contributions from other decay channels may
slightly alter this estimate. Allowing for the redshift be-
fore the Universe reaches thermalization, we evaluate the
reheating temperature of this model to be

Trh ≈ 105 − 107 GeV. (18)

Ø Baryogenesis	
  via	
  resonant	
  leptogenesis	
  @	
  TeV	
  

Ø R-­‐parity	
  viola*ng	
  bilinear	
  term	
  via	
  SUSY	
  breaking	
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Summary	
  

Ø  Infla*onary	
  universe	
  is	
  the	
  standard	
  paradigm	
  in	
  
modern	
  cosmology	
  and	
  consistent	
  with	
  the	
  current	
  
observa*ons	
  

Ø  Infla*on	
  takes	
  place	
  at	
  very	
  high	
  energy	
  and	
  it	
  
should	
  be	
  interes*ng	
  if	
  infla*onary	
  scenario	
  has	
  
some	
  rela*ons	
  to	
  low	
  energy	
  physics	
  	
  

Ø  In	
  Higgs	
  infla*on,	
  Higgs	
  plays	
  the	
  role	
  of	
  inflaton	
  and	
  
offers	
  rela*ons	
  between	
  EW	
  observables	
  and	
  
infla*onary	
  predic*ons	
  	
  

Ø  Aser	
  the	
  Higgs	
  boson	
  discovery	
  and	
  BICEP2	
  result,	
  
realiza*on	
  of	
  Higgs	
  infla*on	
  is	
  possible	
  but	
  
(technically)	
  non-­‐trivial	
  	
  



Summary	
  (cont’d)	
  

Ø  We	
  have	
  also	
  discussed	
  SUSY	
  extension	
  of	
  Higgs	
  
infla*on,	
  which	
  is	
  in	
  fact	
  very	
  simple,	
  but	
  we	
  need	
  to	
  
extend	
  MSSM	
  

Ø  HL-­‐Infla*on	
  is	
  a	
  scenario	
  realized	
  in	
  seesaw	
  extended	
  
MSSM	
  	
  

Ø  Via	
  seesaw	
  mechanism	
  and	
  the	
  neutrino	
  oscilla*on	
  
data,	
  infla*onary	
  predic*ons	
  are	
  controlled	
  by	
  the	
  
seesaw	
  scale	
  

Ø  BICEP2	
  result	
  constrains	
  right-­‐handed	
  neutrino	
  mass,	
  
Ø  In	
  type	
  III	
  seesaw	
  extension,	
  a	
  large	
  po*on	
  of	
  the	
  

parameter	
  space	
  consistent	
  w/	
  BICEP2	
  can	
  be	
  
explored	
  by	
  14	
  TeV	
  LHC	
  	
  

Ø  Implica*ons	
  to	
  cosmology	
  (leptogenesis,	
  DM)	
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  very	
  much	
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