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The fluid phase behavior of colloidal suspensions with short-range attractive interactions is studied
by means of Monte Carlo computer simulations and two theoretical approximations, namely, the
discrete perturbation theory and the so-called self-consistent Ornstein-Zernike approximation. The
suspensions are modeled as hard-core attractive Yukawa (HCAY) and Asakura-Oosawa (AO) flu-
ids. A detailed comparison of the liquid-vapor phase diagrams obtained through different routes is
presented. We confirm Noro-Frenkel’s extended law of scaling according to which the properties of
a short-ranged fluid at a given temperature and density are independent of the detailed form of the
interaction, but just depend on the value of the second virial coefficient. By mapping the HCAY and
AO fluids onto an equivalent square-well fluid of appropriate range at the critical point we show that
the critical temperature as a function of the effective range is independent of the interaction potential,
i.e., all curves fall in a master curve. Our findings are corroborated with recent experimental data for
lysozyme proteins. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747193]

I. INTRODUCTION

The study of the phase equilibrium in colloidal suspen-
sions is of particular relevance in physics, biology, materials
science, and several other branches of science.1–4 This grow-
ing interest resides in the fact that, on one hand, colloidal
suspensions are ubiquitous in nature comprising among oth-
ers milk, paints, additives, etc. Additionally, they are simple
model systems that allow us to obtain a better comprehension
of the phase behavior of more complex fluids, such as protein
suspensions.5–13

Colloids are typically used as model systems mainly be-
cause of the following interesting common features: (1) col-
loids and other macromolecules share similar time (1 μs
−1 s) and length (10 nm−1 μm) scales, (2) the forces be-
tween colloidal particles also describe the interaction be-
tween macromolecules in aqueous environment, (3) from an
experimental point of view the interaction between colloids
can be tuned,14–18 and (4) colloidal suspensions can be stud-
ied by means of different complementary techniques, i.e.,
experiments,19–21 computer simulations22–24 and theoretical
approximations.25–29 Hence, the understanding of the phys-
ical properties of colloidal suspensions allows us to give a
qualitative (and sometimes quantitative) description of a large
variety of complex fluids.30

Protein phase separation is typically of interest in
the production of protein crystals which are used both in
pharmaceutical industry and protein crystallography.17 Re-
cently, it has been shown that protein phase separation

a)Electronic mail: ramoncp@fisica.ugto.mx.

in organic tissues is related with diseases such as
cataract,31–33 sickle cell anemia,34, 35 Alzheimer disease,36

cryoimmunoglobulinemia,37 among others. Therefore, a com-
plete knowledge of the phase transitions of proteins in sus-
pension may help to develop therapies against such diseases.
Additionally, proteins exhibit interesting structural and dy-
namical properties, such as cluster formation38–43 and inter-
mediate order.44, 45 In particular, lysozyme (a globular protein)
has been used as model protein to understand the phase behav-
ior of biomolecules in aqueous solutions.11, 12, 16, 17, 46–51 Dur-
ing the last few years, patchy-based models have also been
used to explain the rich phase behavior of lysozyme and other
proteins, see, e.g., Refs. 52–54.

Colloidal and protein suspensions show phase separa-
tions analogous to the transitions observed in simple liq-
uids. In the fluid-solid transition the colloidal particles
form regular structures (crystals) or amorphous structures
(aggregates).55, 56 In the coacervation or liquid-liquid transi-
tion (analogous to the vapor-liquid transition) of the colloidal
suspensions two-liquid phases with different colloidal con-
centrations coexist.12, 15, 25, 56 When the range of the attrac-
tive interparticle interaction is short-ranged (a few percent of
the particle diameter), the liquid-liquid transition is buried in-
side the liquid-solid transition and, therefore, it is termed a
metastable transition.57 Recently, the research of the liquid-
liquid transition in systems with short-range attractive inter-
actions has been motivated by the aim of finding the optimum
conditions for nucleation, that occurs near to the metastable
binodal,17, 58 and of understanding the physical mechanisms
behind the dynamical arrest transition in adhesive-like col-
loidal systems.41, 59, 60
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The phase behavior of both colloidal and protein suspen-
sions can be changed by the addition of either salt or non-
adsorbent particles.12, 61 In particular, when an electrolyte is
added the pH of the suspension is modified.12, 17, 18, 62–65 In
this case, it is well-known that the microions form a hetero-
geneous cloud around the colloids, i.e., the so-called double
layer,66–68 that is responsible for the screening of the elec-
trostatic interactions. The colloidal screening can be quan-
tified by the Debye length,18, 69 κ−1. In contrast, the addi-
tion of non-adsorbent polymers can cause a phase separation
due to the (attractive) depletion forces.15 An uncharged sub-
stance induces an effective attraction between colloids which
is responsible (under specific conditions) for particle aggre-
gation; this effect is entropy driven. Such an attraction de-
pends on the molecular mass and concentration of the added
substance.17 In the case of mixtures of colloids and poly-
mers, it depends both on the degree of polymerization and
on the polymer concentration.16–18, 55, 70 Therefore, although
it is well-known that the equilibrium state of a suspension
is described by the minimization of the Helmholtz free en-
ergy, one typically chooses one route to induce changes in
the phase, i.e., we usually construct either energy-driven or
entropy-driven phase separation mechanisms. Interestingly,
both routes allow us to obtain similar physical properties in
the coexistence region.41, 59

In theoretical approximations as well as simulations,
one models the effective interaction between proteins as a
hard core repulsion plus a short-range attractive tail and
a long-range repulsion that includes information of the
medium through some fit parameters, see, e.g., Ref. 5. The
most extensively studied models are the hard-core attrac-
tive Yukawa (HCAY) that represents the screened electric
potential and the Asakura-Oosawa (AO) that takes into ac-
count the effect of the depletion forces.71–74 Both poten-
tials can be crudely represented by the so-called square-
well (SW) potential.23, 75 The HCAY potential has been
studied within the context of proteins by Foffi et al.26

by using both the self-consistent Ornstein-Zernike approx-
imation (SCOZA) and a first-order perturbation theory for
κσ ≥ 5, with σ being the particle diameter. Addition-
ally, Li et al.13 obtained the binodal curve by means of
Monte Carlo (MC) computer simulations for κσ ≥ 3.9.
The phase behavior of systems driven by depletion mecha-
nisms was investigated many years ago by Gast et al.76 They
localized both liquid-vapor and liquid-solid regions of coex-
istence by means of a thermodynamic perturbation theory.
Recently, Germain and Amokrane re-investigated the mecha-
nisms of gelation and phase coexistence in binary mixtures of
hard spheres through the use of the AO potential model.77, 78

Within the AO approximation, the phase behavior of either
colloidal or protein suspensions has been studied in two lim-
iting cases: the colloidal limit (σ c/σ p � 1) and the protein
limit (σ c/σ p � 1),24, 61, 76, 79 where σ c is the diameter of the
colloid or protein and σ p is the radius of the depletant agent
or polymer, respectively.

The SW potential is one of the simplest and most stud-
ied potentials that mimics the properties of a variety of po-
tentials like the HCAY and AO.80–82 Unfortunately, there is
not a direct way to relate parameters like the Debye length

or polymer concentration to the SW parameters. Thus, the
SW potential does not provide a clear evidence of the ther-
modynamic mechanism that drives the phase transition, i.e.,
it is unclear whether the transition is either energy-driven or
entropy-driven. However, according to the extended law of
corresponding states proposed by Noro and Frenkel,75 it is
possible to find for an arbitrary potential an equivalent SW
potential of width (λ − 1)σ , where λσ is the range of the at-
traction, through a direct comparison of the second virial co-
efficient (B2) at the critical temperature, providing the range
of the attraction is sufficiently short (a few percent of the par-
ticle diameter). In the context of proteins, Lomakin et al.83

compared the phase diagram of some kinds of crystalline pro-
teins with simulation data of the SW fluid of variable range.
They concluded that the mapping between the SW and the
protein system is possible if the interaction range is lower
than 1.25σ . Furthermore, Duda10 found that the SW suitable
to describe the phase separation in lysozyme solutions must
be very short-ranged with a width around 0.1σ .

The aim of this work is to study the phase separation in
a protein suspension by modeling it as a colloidal suspension.
We restrict our study to systems where the range of the at-
traction, in terms of λσ , lies within the interval 1.05σ < λ

≤ 1.25σ . Hence, in order to explore the phase behavior of a
suspension of particles of the same interaction range, we limit
our study to the parameter space (κσ , η) shown in Figure 1,
where η is the size ratio, η ≡ σ c/σ p, between the colloid and
the polymer. The curves in Figure 1 show the correspondence
of the potential parameters of the different model potentials
obtained by considering that the reduced second virial co-
efficient, B∗

2 ≡ B2/B
HS
2 , at the critical point is the same for

both HCAY and AO fluids with a value of −1.5,75, 84 with
BHS

2 = 2πσ 3/3 being the second virial coefficient of a sus-
pension of hard-spheres. The fact that B∗

2 ≈ −1.5 at the criti-
cal point has been explicitly discussed by Noro and Frenkel,75

but it is still under debate since there is evidence of slight
deviations,23, 85 however, in our case, this kind of mapping just
represents a guide to the parameters space of the potential.

FIG. 1. Potential parameters space (κ*, η) as a function of λ determined by
using the mapping proposed by Noro and Frenkel75 where B∗

2 = −1.5 at the
critical point, and κ* ≡ κσ and η is the colloid-polymer size ratio (see text
for further details). The shaded area is the region of our interest.
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In the particular case of the AO potential, we also study the
phase diagram for η = 5 and 10. According to Figure 1 both
potential parameters have the same λ-dependence; this point
will be discussed in more detail below. Systems whose in-
teraction range is lower than 1.05σ can be accurately rep-
resented by the Baxter potential82 and are out of the scope
of this article. Particularly, we put emphasis on the use of
the discrete perturbation theory (DPT) (Ref. 86) and the self-
consistent Ornstein-Zernike approximation87 to fully inves-
tigate the phase behavior of complex fluids where particles
interact with either HCAY or AO potentials.

The DPT has originally been introduced to predict the
thermodynamics of non-polar fluids and their mixtures86, 88

and has also been extended recently to polar fluids.89 It is a
second-order perturbation theory that provides a simple ana-
lytical expression for the Helmholtz free-energy in terms of
the density, temperature, and the interaction potential param-
eters. It has been successfully applied to different potentials
and was able to predict interesting phenomena, such as the
multiple fluid-fluid phase coexistence in monodisperse fluids
and some anomalies of water.90–92 Here, we extend its appli-
cability to the context of colloidal suspensions. SCOZA,87 on
the other hand, is an advanced liquid-state theory that enforces
thermodynamic consistency between different routes to the
thermodynamic properties and has proven to give reliable pre-
dictions even in the critical region where conventional liquid-
state theories usually cease to be predictive. In Ref. 87 the SW
fluid was investigated and the results were in excellent agree-
ment with computer simulations for long and intermediate
ranges of the interaction. However, the reliability of SCOZA
predictions turned out to decrease for the short-ranged SW
potential—a fact that was confirmed recently93 with a refined
numerical solution procedure. In both studies, it was seen that
the solution of the SCOZA partial differential equation (PDE)
for narrow SW fluids turned out to be sensitive to the bound-
ary condition of the PDE at high density. In this work we will
gain some insight whether SCOZA is more reliable for very
short-ranged interactions when one turns to other forms of the
interaction than the SW one. It seems that for the AO as well
as the HCAY potential this feature of SCOZA, although still
present, is much less pronounced, i.e., the predictions are re-
liable up to the smallest ranges considered here.

Our theoretical results are compared with Monte Carlo
computer simulations using both the Gibbs ensemble94 and
the replica exchange method95–99 combined with the scheme
proposed by Chapela et al.100 The latter has been successfully
used to determine the phase-coexistence of the HCAY fluid
of very short-range, i.e., 9 < κσ < 15.101 It is a simple NV T

ensemble technique that leads to the evolution of the two co-
existence phases and, therefore, it permits a quick evaluation
of the coexistence densities. Further details of the technique
are discussed below.

The paper is organized as follows. In Sec. II we dis-
cuss the model potentials typically used to represent protein-
protein interactions. We furthermore briefly review the Monte
Carlo simulation details for the study of the phase coexistence
and we outline the main ideas of the DPT and SCOZA frame-
works. Results are presented in Sec. III: the phase behavior of
the fluids considered in this work is presented and analyzed

and we also discuss the critical properties and present a com-
parison with experimental data for lysozyme proteins. Finally,
in Sec. IV we provide the main conclusions of this work.

II. METHODS

A. Interaction potential

Lysozyme is one the more studied proteins, see, e.g.,
Refs. 51, 102, and 103. It is a quasi-spherical molecule with
a diameter of approximately 3.4 nm, carrying +11e0 elec-
tronic charges;18 which, in general, depends on the pH, and
e0 being the charge of the electron. Experiments performed
with lysozyme proteins have shown that the interaction be-
tween two proteins could be taken as the combination of
a short-ranged attractive tail and a long-ranged repulsive
contribution.11, 12, 18 The former comes from the van der Waals
contribution, while the repulsion is due to the electrostatic
screening caused by the added electrolyte.103 In those cases
where the attraction is the dominant contribution, it is com-
mon practice to model the protein-protein interaction using
the so-called HCAY potential.5, 13, 22, 104–106 This potential can
be written as follows,

uHCAY(r) =
{

∞ r < σ

− εσ
exp [−κ(r−σ )]

r
r ≥ σ

, (1)

where r is the relative distance between particles, ε is the
depth of the potential well, and κ is the Debye screening pa-
rameter,

κ−1 =
√√√√ε0εrkBT

NAe2
0

(∑
i

ciz
2
i

)−1

, (2)

where ci and zi are the concentration and valence of the elec-
trolyte, respectively, ε0 and εr are the dielectric constants
of the vacuum and medium, respectively, kB is the Boltz-
mann constant, T the temperature, and NA the Avogadro’s con-
stant. The screening parameter is usually expressed in reduced
units, i.e., κ	 ≡ κσ . To simplify the notation, from now on, we
omit the star.

The phase behavior of the HCAY has been extensively
studied, see, e.g., Refs. 27, 90, 92, 101, 107, and 108 and ref-
erences therein. It is also known that the HCAY fluid exhibits
a liquid-liquid transition that is metastable with respect to the
liquid-solid transition for κ ≥ 6.05.23, 109 Here, we study its
phase coexistence in the interval 4 ≤ κ ≤ 9; in this regime the
HCAY is considered to be a short-ranged potential and the
coacervation becomes metastable.103

As we mentioned previously, the liquid-liquid phase sep-
aration in proteins can be induced by adding a non-absorbent
polymer into the solution. In the simplest level of descrip-
tion, the protein-polymer system can be modeled as a binary
mixture of hard spheres with diameters σ and σ p, respec-
tively. However, especially regarding simulations, the study
of the phase behavior of such a two-component system is still
a challenge due to the large asymmetry in size between the
components. Therefore, one typically maps the complete sys-
tem onto a one-component model, where the proteins inter-
act through an effective pair potential.110, 111 Although such
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depletion potential is very complex in form, i.e., it shows a
successive combination of attractions and repulsions, it is usu-
ally described, for simplicity, by the AO potential,71

uAO(r) = −kBT φp

[
(η + 1)3 − 3

2
η (η + 1)2 r

σ
+ 1

2
η3 r3

σ 3

]
,

(3)
for σ < r < σ + σ p, and 0 for larger distances. Here,
φp = π

6 ρσ 3
p is the total polymer packing fraction and

η = σ /σ p the size ratio. The magnitude of the potential depth
is ε = |uAO(σ+)| = kBTφp(1 + 3η/2); the depletion attrac-
tion increases either with φp or η. It has been reported that
for η > 3.3 the vapor-liquid transition of the AO fluid be-
comes metastable,76 but for η > 12.5 seems to disappear.15

Within the AO picture, the interaction between lysozyme pro-
teins immersed in a polyethylene glycol (PEG) solution can
be described by Eq. (3) with η < 1.8. Kulkarni et al. investi-
gated the phase diagram in mixtures of proteins and polymers
with η = 1.19, 0.48, and 0.32.112

The aforementioned HCAY and AO interaction potentials
are used as model potentials to investigate energy-driven and
entropy-driven phase separation mechanisms, respectively, in
colloidal or protein suspensions where the interaction range
is smaller than the particle size. Recently, Noro and Frenkel
demonstrated that the details of the short-ranged potentials
are not significant in determining the structure and thermody-
namics of such fluids.75 Consequently, they suggested that all
features of each short-ranged potential could be condensed
into only three quantities (σeff, ε, B

∗
2 ) easily calculated from

the potential; σeff is an effective diameter that accounts for the
repulsion contribution of the potential at short-distances and ε

is the depth of the potential well. They also defined the range
of an arbitrary attractive potential to be equal to the range of
the equivalent SW fluid that yields the same B∗

2 at the same
reduced temperature T* = kBT/ε.75 Therefore, the HCAY and
AO can crudely be represented by the well-known square-well
potential,87

uSW (r) =

⎧⎪⎨
⎪⎩

∞ r < σ

−ε σ ≤ r ≤ λσ

0 r > λσ

, (4)

where ε is the strength of the attraction. This is a potential
with a simple mathematical structure, however, it does not
provide physical information about the mechanism that leads
to the phase separation of matter.

Noro and Frenkel also showed that the knowledge of the
potential alone should then be sufficient to predict the topol-
ogy of the phase diagram. Thus, the so-called Noro-Frenkel’s
extended law of corresponding states mentions that all flu-
ids with short-ranged spherically symmetric attractive inter-
actions should exhibit the same properties when compared at
the same values of (ρ∗, T ∗, B∗

2 ),75 where ρ* ≡ ρσ 3 is the
reduced density. However, Gazzillo has recently proven that
the Noro-Frenkel’s extended law cannot be applied to van-
ishing attraction range for the HCAY, since its exact second
virial coefficient diverges in such a limit,104 see also refer-
ences therein. A similar conclusion has been drawn recently
by Mier y Terán and Alejandre.113

Despite the fact that, according to Gazzillo,104 the HCAY
potential, given by Eq. (1), does not reduce to the adhesive
hard-sphere potential in the limit κ → ∞ and, furthermore it
cannot be mapped to a SW of finite range, it has been shown
that the Noro-Frenkel’s scaling through the equality of B2

meets the requirements of the extended law of correspond-
ing states for ranges out of the sticky limit. Therefore, such
a scaling is here applied to obtain the potential parameters of
both HCAY and AO fluids (see Figure 1) by assuming that
B∗

2 =−1.5 at the critical point.75 As becomes evident from
Figure 1, the functional dependence of κ and η versus λ is the
same. This fact is of crucial importance for the understanding
of the similarities in the phase behavior of the different fluids
investigated here. This point, a scaling analysis of both the
phase diagram and the critical points, and explicit compari-
son with experimental data of lysozyme proteins are provided
further below.

B. Monte Carlo computer simulation techniques

We study the phase coexistence by means of Monte
Carlo computer simulations. In particular, we use the so-
called Gibbs ensemble technique originally proposed by
Panagiotopoulos94 and the canonical ensemble method devel-
oped by Chapela et al.100 together with the replica exchange
method.95, 96, 99

In our Gibbs ensemble simulations, we initially place
1720 particles uniformly distributed in a cubic box that is di-
vided into two equal volumes. Then, we perform the follow-
ing operations: displacement of particles, exchange of volume
and particle exchange between the boxes. One Monte Carlo
cycle consists of performing randomly the aforementioned
operations at the ratio of 200:1:800. We use 5 × 105 Monte
Carlo cycles to equilibrate the system and 5 × 105 production
cycles. The acceptance ratio for both particle displacement
and volume changes was fixed to 50%.

To apply the canonical ensemble method, we construct a
parallelepiped whose dimensions are Lx = Ly and Lz = 10Lx,
where Li with i = x, y, z is the edge in the i-direction. In
the center of the box, we place particles in a dense phase
(phase I), surrounded by a more diluted phase (phase II).
We then distribute 2500 particles in the box in such a way
that the reduced total bulk density is always ρ* > 0.4 to ob-
tain a smoother density profile. The densities in the dense
and diluted phases are ρ∗

I > 0.8 and ρ∗
II < 0.1, respectively.

To accelerate the equilibration process, we execute the fol-
lowing two steps: (i) The dense phase is artificially sepa-
rated from the dilute phase by imposing separating hard-
walls that avoid the interaction with particles in the dilute
phase and equilibrated as a fluid of hard-spheres. (ii) We
then switch on the interaction potential and remove the ar-
tificial walls that separate both phases. Then, we choose a
particle: it can be either displaced in the standard way or
placed at a random position; this kind of operation was pro-
posed by Lomakin et al.83 The acceptance ratio of standard
particle displacement is fixed to 30%. One cycle consists of
2500 attempts of particle displacements and 1000 attempts
of particle deletion and subsequent insertion. Our equilibra-
tion process consists of 400 MC cycles of the first step and
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FIG. 2. Density profile and the corresponding snapshot for a HCAY fluid
with κ = 4 and T* = 0.49 obtained by applying the canonical method,100

which is discussed explicitly in Sec. III.

30 000 MC cycles of the second one. Averages are obtained
through 40 000 MC cycles. The density profile, ρ(z), is mea-
sured every 5 cycles in the center of mass of the system. Coex-
istence densities are estimated by fitting the density profile to
a tanh function.101 To illustrate this simple method, Figure 2
shows a density profile and a snapshot of the HCAY fluid at
T* = 0.49 for κ = 4.

The replica exchange method is implemented as follows.
Given our system of interest S1 at a reduced temperature T ∗

1 ,
we construct a set of non-interacting replicas {Si} with the
same properties as the original system, but at different tem-
peratures. Temperatures of each replica are chosen in such a
way that T ∗

1 < T ∗
2 < · · · < T ∗

n . In each system, we move the
particles according to the conventional Monte Carlo scheme
and eventually attempt to interchange the particle configura-
tions between replicas. The acceptance probability of a con-
figuration swap between systems S1 and S2 is given by114

p = min
(
1, exp

[
(βi − βi+1)

(
U

(
rN
i

) − U
(
rN
i+1

))])
, (5)

where β i = 1/(kBTi) and U (rN
i ) is the total potential energy of

system Si. The choice of the temperature range must ensure
that the system at the highest temperature is out of the region
of local minima or metastable states, i.e., the highest tempera-
ture must lie in the regime where no liquid-vapor transition is
expected. The number of replicas is chosen so that the value
of the acceptance ratio of configuration swaps is around to
20%.115 The implementation of the replica exchange method
is straightforward. We construct 30 replicas of our system and
modify our initial definition of a Monte Carlo cycle by includ-
ing configuration swaps; in each cycle we attempt 20 system
swaps. We choose the temperatures of the systems in such a
way that the temperature difference between adjacent systems
is constant.

To estimate the critical point, we use a scaling type law
and the law of rectilinear diameters. According to this proce-
dure the critical point parameters ρc and Tc are fitted to the
following equations:116

ρ∗
l − ρ∗

v = C1
(
T ∗

c − T ∗)β
, (6)

ρ∗
l + ρ∗

v

2
= ρ∗

c + C2
(
T ∗

c − T ∗), (7)

FIG. 3. Schematic representation of a hard-core attractive potential (solid
line). It can be approximated by a sequence of square-wells and square-
shoulders. The details of the discretization are discussed explicitly in the text.

where ρ∗
l and ρ∗

v are the coexisting liquid and vapor densities,
respectively, at given temperature T *, the critical exponent
β = 0.325, and C1 and C2 are two further fit parameters.

C. Discrete perturbation theory

In the DPT (Ref. 86) a given potential u(r) is approx-
imated through its discrete version, uDIS(r), given by a se-
quence of SW and square-shoulders (SS). Mathematically, the
discrete potential can be written as follows:86

uDIS(r) = uHS(r) +
n∑

i=1

uS
i (r), (8)

where uHS(r) is the hard-sphere potential, n is the number of
steps forming the discrete potential, and

uS
i (r) =

{
εi λi−1σ ≤ r < λiσ

0 otherwise
, (9)

is the potential in each step i, with i = 1, . . . , n. A schematic
representation of the discrete potential is displayed in
Figure 3.

The reduced excess Helmholtz free-energy, a = A/NkBT,
for a system of spherical particles interacting via a discrete
potential is given by,86

a = aHS(φ) + β

n∑
i=1

[
aS

1 (εi, λi ; φ) − aS
1 (εi, λi−1; φ)

]

+β2
n∑

i=1

[
aS

2 (εi, λi ; φ) − aS
2 (εi, λi−1; φ)

]
, (10)

where A is the total free energy, N is the number of particles,
φ is the packing fraction, β = 1/kBT; aHS(φ) is the reduced
Helmholtz free-energy of the reference system; which is given
by the Carnahan-Starling equation of state,117

aHS(φ) = φ(4 − 3φ)

(1 − φ)2
. (11)
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The terms aS
1 and aS

2 are the first and second-order perturba-
tion terms, respectively, for a SW (εi < 0) or SS (εi > 0), see
Refs. 118 and 119. The perturbation terms are closely linked
to simple relations,86

aSW
1 (ε, λ; φ) = −aSS

1 (ε, λ; φ), (12)

aSW
2 (ε, λ; φ) = aSS

2 (ε, λ; φ). (13)

From the reduced Helmholtz free energy expression, all ther-
modynamic properties can be straightforwardly obtained,
such as the reduced pressure P* ≡ Pσ 3/ε and the reduced
chemical potential μ* ≡ μ/kBT,120

P ∗ = ρ∗T ∗Z, (14)

μ∗ = a + Z, (15)

where the compressibility factor, Z, is defined as,

Z = φ

(
∂a

∂φ

)
T ,V

. (16)

The equilibrium coexistence between two phases, I and
II, is established by solving the following simultaneous equa-
tions:

P ∗(ρ∗
I , T ∗) = P ∗(ρ∗

II , T
∗), (17)

μ∗(ρ∗
I , T ∗) = μ∗(ρ∗

II , T
∗). (18)

Furthermore, in order to apply the DPT to an arbitrary
potential it is necessary to use an accurate expression for the
Helmholtz free energy SW first and second-order perturbation
terms. In this work, we restrict our attention to short-ranged
potentials, so we use expressions from the square-well equa-
tion of state (SWEOS) proposed by Espíndola et al.121 We
denote in this work by ESPSW the second-order version of
this SWEOS. We should point out that the use of ESPSW in
the DPT approach imposes a natural restriction to the grid
size employed in the discretization procedure of the interac-
tion potential.

1. DPT for the hard-core Yukawa potential

Recently, the DPT has been applied to the study of ther-
modynamic properties of both hard-core repulsive Yukawa
(HCRY) and HCAY fluids, respectively.90, 92 In particular, au-
thors focused on both the case of long-ranged interactions,
i.e., 0.1 < κ < 4, and the discretization details of the continu-
ous part of the potential. They concluded that the DPT works
well for the considered regime of κ , but its performance im-
proves as κ decreases, i.e., for long-ranged interactions. In
this work we extend the applicability of this approach by con-
sidering short-range attractions, i.e., κ > 4.

The inclusion of continuous potentials into the DPT for
colloidal suspensions is the same as the one used in the con-
text of simple liquids.90 As we observe directly from Eq. (1),

the HCAY potential is radially symmetric, i.e., it is only a
function of the particle separation r. The potential parameters
are κ and ε. The former is directly related to the range of the
potential and the latter corresponds to the well depth. In order
to discretize the HCAY potential, we construct a succession
of steps i of width 0.1σ and depth εi < 1; the depth is chosen
as the potential at the middle point of the step (see Figure 3).
We truncate the potential at a distance where the potential is
smaller or equal to 10−6 according to the rules given explic-
itly by Torres et al.90 After this, one can proceed to calculate
the phase coexistence as explained above.

2. DPT for the Asakura-Oosawa potential

The AO interaction potential possesses also spherical
symmetry. This allows us its natural inclusion within the DPT
formalism. In particular, the attraction strength of the AO po-
tential is a function of both the polymer concentration, φp,
and the size ratio, η (see Eq. (3)). For the sake of the dis-
cussion, we define here the magnitude of the well depth as ε

≡ kBTφp(1 + 3η/2), which corresponds to ε = −uAO(r = σ+).
Then, within the AO fluid, the reduced temperature is T *

≡ kBT/ε = (φp(1 + 3η/2))−1.
To obtain a discrete version of the AO potential, we di-

vide the interval [1, (1 + 1/η)] into n segments of length 0.1.
Values of εi are also chosen as in the HCAY (Refs. 90 and 92)
case.

D. SCOZA

The SCOZA, is a microscopic liquid-state theory that
has proven to yield very accurate predictions for the ther-
modynamics, the structural properties and the liquid-vapor
coexistence curve for various systems throughout the whole
temperature-density plane.122, 123 Comparison with computer
simulations has shown, in an impressive way, that SCOZA re-
mains successful even in the critical region and exhibits some
form of scaling with non-classical, i.e., non mean-field crit-
ical exponents.124 The main ingredient of SCOZA is the
self-consistency requirement between different statistical me-
chanical routes from the structural to the thermodynamic
properties. A detailed description of SCOZA can be found
in Ref. 87, 122 and 125, so we limit our presentation here to
the essential ideas.

Like all integral equation theories SCOZA is based on
the Ornstein-Zernike (OZ) relation,126

h(r) = c(r) + ρc ⊗ h(r), (19)

that defines the direct correlation function c(r) in terms of the
total correlation function h(r) (⊗ denotes a convolution inte-
gral). Equation (19) is supplemented with a mean spherical
approximation (MSA)-type closure relation,126

g(r) = 0 for r < σ,

c(r) = A(ρ, β)u(r) + cHS(r) r > σ ;
(20)

where g(r) = h(r) − 1 is the pair distribution function, cHS(r)
is direct correlation function of the hard-core reference sys-
tem and A(ρ, β) is a function of the thermodynamic state (ρ,
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β). In contrast to the MSA, where A(ρ, β) = −β, here A(ρ, β)
is not fixed a priori but is instead determined so that thermo-
dynamic consistency is ensured between the compressibility
and the energy route. The consistency relation is expressed as
a partial differential equation (PDE),

∂

∂β

(
1

χred

)
= ρ

∂2uex

∂ρ2
. (21)

χ red = ρkBTχT is the reduced isothermal compressibil-
ity given by the compressibility route 1

χred = 1 − ρc̃(k = 0),
where c̃(k) denotes the Fourier transform of c(r), and uex

≡ Uex

V
is the excess (over ideal) internal energy per volume

given by the energy equation uex = 2πρ2
∫

g(r)φ(r)r2dr. Equa-
tion (21) supplemented by the OZ relation (19), the closure re-
lation (20), and the expressions of the compressibility and the
energy route yields a PDE for A(ρ, β) that can be re-expressed
as a PDE of diffusion type for uex,

B(ρ, uex)
∂uex

∂β
= ρ

∂2uex

∂ρ2
, (22)

with a diffusion coefficient B(ρ, uex). The numerical solution
procedure of SCOZA used in this work is described in detail
in Ref. 87.

For a long time, applications of SCOZA were rather
scarce due to historical and technical reasons, the complex-
ity of the SCOZA formalism and the heavy numerical solu-
tion algorithm, i.e., for the case of continuum fluids, appli-
cations were initially restricted to the one-component HCAY
fluid. This restriction can be traced back to the fact that
SCOZA originally grew out of the semi-analytic solution of
the MSA for such systems. These semi-analytic expressions
lead to simplifications of the numerical solution of SCOZA
and a considerable reduction of computational cost. However,
these restrictions are purely technical ones and not part of
the concept of SCOZA. The success of SCOZA for these
few model systems was the motivation for broadening its
applicability.87, 105, 125, 127–129 Nowadays, SCOZA is solvable
for arbitrary spherically symmetric hard-core potentials, such
as the AO or the SW potential. However, in these cases the de-
termination of the diffusion coefficient B(ρ, u) must be done
fully numerically and comes, of course, at a substantial com-
putational cost.

III. RESULTS

A. Phase coexistence

We now turn to the liquid-vapor phase diagram of the
HCAY, AO, and SW fluids as a function of the attractive
range. As expected, the phase coexistence curve is shifted to
lower temperatures as the interaction range decreases. This
well-known effect can be understood naively by consider-
ing that less thermal energy is required to break short-ranged
forces and, then, to induce a liquid-vapor phase separation.

For the sake of simplicity, we use identical notation in
all figures. Our theoretical results are displayed by solid lines
(DPT) and dotted lines (SCOZA), whereas our simulation
data are represented by open squares (Gibbs ensemble) and
circles (canonical ensemble). We also include the results from

FIG. 4. Phase diagram of the HCAY fluid for κ = 4 and κ = 6 obtained by the
DPT (solid lines), SCOZA (dotted lines and critical point denoted by a star),
and computer simulations using the Gibbs (squares) and canonical (circles)
ensemble techniques. We have included Barker and Henderson perturbation-
type results of Tavares and Prausnitz106 (dash-dotted line) and Robles and
de Haro130 (dashed line). We also show simulation results of Duda et al.22

(triangles) and Lomba and Almarza131 (crosses).

other authors. Then, the corresponding symbols are explained
in the figure caption.

1. HCAY fluid

We show the results for 4 ≤ κ ≤ 9 in Figures 4–6. As can
be seen, the perturbation-like approximations reproduce qual-
itatively the vapor-liquid phase diagram. They predict reason-
ably well the critical densities and overestimate the critical
temperature. SCOZA results give, in general, better predic-
tions compared to simulations, especially regarding the criti-
cal region. In order to quantize the discrepancies of the DPT,
we have calculated the relative standard deviation of each
phase diagram calculated through DPT with respect to our
canonical simulation data and found that for all cases this
deviation is at most 15% and almost independent of κ . Ad-
ditionally, it is important to mention that the DPT could be
improved if better expressions for the first and second-order
free-energy perturbation terms for the SW potential were pro-
vided for very short-ranges, which are currently not available.
SCOZA predicts accurately the critical points up to the high-
est κ value considered. However, the deviations of the liq-
uid branch increase with decreasing interaction range. This
feature of SCOZA is already known from previous studies
of other potentials,87 and was found to be more or less pro-
nounced depending on the potential under study.

Regarding our simulation data, we see that they agree
with other simulation results, however, the ones obtained with
the Gibbs ensemble technique show a larger deviation at the
liquid branch when κ = 9, see Figure 6; it is known that
this technique cannot reproduce correctly the phase coexis-
tence for short-ranged attractive potentials, see, e.g., Ref. 101
and references therein. In addition, the estimates of the criti-
cal points by means of the canonical ensemble technique are
very close to those predicted by SCOZA. It seems that such
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FIG. 5. Phase diagram of the HCAY fluid for κ = 5 and κ = 7 obtained by the
DPT (solid lines), SCOZA (dotted lines and critical point denoted by a star),
and computer simulations using the Gibbs (squares) and canonical (circles)
ensemble techniques. We have included Barker and Henderson perturbation-
type results of Tuinier and Fleer132 (dash double dotted line), Zhou133 (dash-
dotted line) and Fu134 (long dotted line). We also show simulation results
of Duda et al.22 (triangles) and thermodynamic integration from Dijkstra23

(long dashed line).

a technique together with the replica exchange method is an
appropriate route to deal with the determination of the phase
diagram of short-ranged attractive fluids.101

2. AO fluid

The other short-ranged potential we have considered in
this work is the AO potential (see Eq. (3)). We present its
liquid-vapor phase diagram (see Figures 7–11) using both
DPT and SCOZA as theoretical frameworks, as well as the
Gibbs ensemble and the canonical simulation schemes. As far

FIG. 6. Phase diagram of the HCAY fluid for κ = 9 obtained by the DPT
(solid lines), SCOZA (dotted lines and critical point denoted by a star), and
computer simulations using the Gibbs (squares) and canonical (circles) en-
semble techniques. We have included Barker and Henderson perturbation-
type results of Tavares and Prausnitz106 (dash line) and Zhou133 (dash double
dotted line). We also show simulation results of Orea et al.101 (pentagons).

FIG. 7. Phase diagram of the AO potential for η = 1.25. We show theo-
retical predictions obtained from DPT (solid line), SCOZA (dotted line and
critical point denoted by a star), and simulation results obtained from canoni-
cal (circles) and Gibbs (squares) ensembles. We compare our results with the
perturbation theory (dashed-dotted line) and computer simulations (triangles)
of Dijkstra et al.24

as we know, this is the first time that AO binodal curves are
obtained through the aforementioned methods. Our control
parameter is the size ratio, η. In some cases, we compare our
results with available data from perturbation theory,15, 24, 135

and other computer simulations.24, 79

For the longer ranges, η = 1.25 and 1.67 (Figures 7 and
8), the perturbation-based approximations give similar results,
i.e., they reproduce the phase diagram, outside the critical
region. Our simulation data (canonical and Gibbs ensemble
techniques) agree with those reported by Dijkstra et al.,24

which were obtained via thermodynamic integration, how-
ever, they predict a coexistence curve shifted to slightly lower
temperatures. In both figures, we observe that our canonical
simulation results are in excellent agreement with SCOZA
predictions even for the critical point.

The case η = 2.5 is shown in Figure 9. Here, we ob-
serve that perturbation-like approximations reproduce the di-
lute phase, whereas DPT gives better predictions for the liquid
branch than the other two perturbation approaches. Regarding
the simulation results, as in the previous figures, all methods
predict similar curves, although the route via thermodynamic
integration shifts the coexistence curve to lower temperatures
and the critical point to higher densities. Again, SCOZA pre-
dictions are closer to the canonical simulation results. Com-
pared to the two previous cases η = 1.25 and η = 1.67, where
the agreement of SCOZA with simulations was excellent, now
small discrepancies on the liquid side become visible. Such
a deviation is pronounced when the range of the attraction
becomes shorter. In particular, it happens in the same region
as for the HCAY fluid, see Figure 5 for κ = 7, which corre-
sponds, approximately, to η = 2.5 according to Figure 1.

We now focus on the case η = 3 shown in Figure 10. The
liquid-vapor diagram obtained by means of the DPT agrees
well with the predictions of the Gibbs ensemble for the va-
por branch, whereas it agrees with the liquid branch far away
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FIG. 8. Phase diagram of the AO potential for η = 1.67. We show theo-
retical predictions obtained from DPT (solid line), SCOZA (dotted line and
critical point denoted by a star), and simulation results obtained from canon-
ical (circles) and Gibbs (squares) ensembles. We compare our results with
the perturbation theory of Dijkstra et al.24 (dashed-dotted line), Tavares and
Sandler135 (dashed-line), and computer simulations of Dijkstra24 (triangles).

from the critical point obtained by the canonical ensemble
simulations. As observed in the previous cases, SCOZA gives
a better estimate of the coexistence region compared with
the canonical method, especially the critical point is well re-
produced. However, at this point we start to appreciate dif-
ferences between the two simulation techniques, which are
expected since in the previous case, i.e., for the attractive
Yukawa fluid, deviations between both schemes become ev-
ident at κ > 8, which corresponds to η > 3 according to
Figure 1. We have also included data from Ilett et al.15 and
Bolhouis et al.79 The former data are obtained with a per-
turbation theory that predicts a gas branch consistent with

FIG. 9. Phase diagram of the AO potential for η = 2.5. We show theoretical
predictions obtained from DPT (solid line), SCOZA (dotted line and critical
point denoted by a star), and simulation results obtained from canonical (cir-
cles) and Gibbs (squares) ensembles. We compare our results with the pertur-
bation theory of Dijkstra et al.24 (dashed-dotted line), Tavares and Sandler135

(dashed line), and thermodynamic integration results of Dijkstra24 (triangles).

FIG. 10. Phase diagram of the AO potential for η = 3. We show theoretical
predictions obtained from DPT (solid line), SCOZA (dotted line and critical
point denoted by a star), and simulation results obtained from canonical (cir-
cles) ensemble and the Gibbs ensemble (squares). We compare our results
with the perturbation theory of Ilett et al.15 (dashed-double dotted line), and
computer simulations of Bolhuis et al.79 (diamons).

our DPT calculations, nonetheless, both the critical point and
the liquid branch are shifted to larger densities, and the latter
study with computer simulations also shows differences with
respect to our data: the critical density is shifted to smaller
densities, the critical temperature is found at lower tempera-
tures and the coexistence curve is narrower. Such differences
might be associated to the fact that the authors in Ref. 79 used
a few number of particles (108) in their Gibbs ensemble simu-
lations, i.e., due to finite-size effects. Furthermore, the predic-
tions of the liquid branch found with the Gibbs ensemble tech-
nique start to deviate strongly from all the other calculations
that independently almost agree each other and, as we already
mentioned above, η = 3 almost corresponds to κ ≈ 8 (see
Figure 1). In addition, if both potentials share the same sec-
ond virial coefficient, then one should expect the same physi-
cal properties according to the extended law of corresponding
states.75 Thus, the Gibbs ensemble seems not to provide reli-
able results for AO fluids with size ratios η > 3.

The phase coexistence for η = 5 and η = 10 is depicted
in Figure 11. In both cases the Gibbs ensemble technique did
not equilibrate. Hence, the liquid-vapor coexistence was not
obtained with this method. Since for these cases the AO range
is very small, the DPT is no longer used because, as it has
been mentioned before, better expressions are required for the
first and second-order terms for λ < 1.1. Unfortunately, up to
now, such terms are not available.

For η = 5 SCOZA still provides a good estimate of
the liquid-vapor transition according to our canonical simu-
lation data, in particular, it gives a quantitative resolution of
the gas branch. In the special case of η = 10, strong differ-
ences among all the theoretical and simulation results can be
observed. For instance, the data reported by Dijkstra24 ob-
tained by means of perturbation theory strongly differ from
the ones calculated with thermodynamic integration. How-
ever, SCOZA predictions nicely lie in the same tempera-
ture range as those of our canonical simulations. The critical
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FIG. 11. Phase diagram of the AO potential for η = 5 and η = 10. We
show SCOZA (dotted line and critical point denoted by a star) and simula-
tion results obtained from canonical ensemble (circles). For η = 10, we also
compare our results with the perturbation theory (dashed line) and thermody-
namic integration (triangles) of Dijkstra et al.24

temperature predicted by the different schemes is the physical
quantity that shows a stronger dispersion, but the predictions
for the critical density seem to agree, except that of the per-
turbation theory of Dijkstra.24 Clearly, further refinements of
the theoretical approaches are necessary to correctly calculate
the phase coexistence of the AO fluid for size ratios η ≥ 5.

3. SW fluid

So far we have discussed the phase behavior of systems
with short-range attractions, whose driving mechanism (en-
ergetic or entropic) can be explicitly modeled by the HCAY
and AO potentials, see Eqs. (1) and (3), respectively. As we
stressed in the Introduction, both potentials depend on phys-
ical properties of the host medium, for example, the pH or
the polymer concentration, and can be crudely represented by
a simple SW. The latter one mimics the main features of the
HCAY and AO potentials: a hard-core that forbids particle
overlap and an attractive tail that accounts for the physical
mechanism that leads to the phase separation. However, there
exists no general rule to map any attractive potential onto
a SW potential. This issue has been extensively discussed
since the work of Noro and Frenkel.75 Nonetheless, the sim-
ple mathematical structure of the SW potential, see Eq. (4),
permits to include it in different theoretical approximations,
see, e.g., Refs. 87 and 136 and references therein, to study the
phase behavior of both simple and complex fluids.

Recently, we have studied the phase behavior of the
SW fluid by means of different perturbation theory based on
the SWEOS and SCOZA within the framework of simple
liquids.87 We demonstrated that both schemes are accurate
for ranges λ > 1.5,87 but the regime of interest in the protein
domain (see Figure 1) was not studied in detail. Thus, we
here analyze and, for the sake of completeness, explore the
feasibility of the ESPSW and SCOZA within the context of
complex fluids. We show the liquid-vapor curves of the SW
fluid for interaction ranges in the interval 1.05 ≤ λ ≤ 1.25 in

FIG. 12. Phase diagram of the SW potential. Solid lines correspond to
ESPSW (Ref. 121) and dotted lines to SCOZA, circles and squares to simu-
lation data in the canonical and Gibbs ensembles, respectively. We also show
simulation results of Pagan and Gunton137 (diamonds), Duda10 (triangles),
Lomakin et al.83 (inverted triangles), Largo et al.138 (pentagons), and theo-
retical results of Rosenbaum et al.85 (dashed line).

Figure 12. As can be seen, our NV T results agree
with previous simulation data obtained by different
methodologies.10, 83, 137, 138

The ESPSW overestimates the critical point parameters,
especially the temperatures, but provides a good estimate for
the critical densities. Besides, the observed deviations become
more important as the attractive range decreases, however, for
all ranges considered we find that relative standard deviation
is less than 10% (data not shown), i.e., the deviation does not
depend on the range.

Finally, SCOZA describes correctly the phase behav-
ior down to λ = 1.15, including the critical point and the
gas branch, but it fails for shorter ranges. This feature of
SCOZA, which does not occur to this extent for the other
potentials studied with SCOZA up to now was discussed in
more detail in Ref. 93. Whether this is related to the fact
that the SW potential is in contrast to all the other potentials
studied with SCOZA—including the Yukawa,27, 101, 122, 127 the
Sogami-Ise,125 the triangular129 and the AO potential—the
only discontinuous function is still unclear.

B. Critical points and extended law
of corresponding states

The thermodynamic properties for some real substances
can be described by a set of universal equations; this was
pointed out by Pitzer139 and Guggenheim140 in the so-called
law of corresponding states. Physical quantities, such as vapor
pressure, Boyle point, liquid-vapor coexistence curve, among
others, take a constant value or fall onto one master curve
when they are expressed in terms of the critical values of
temperature, density, and pressure. By means of molecular
simulations, Noro and Frenkel75 have recently shown that the
critical temperature, expressed in terms of the sticky param-
eter, τ , which was introduced by Baxter,141 takes a constant
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FIG. 13. Binodal curves expressed in terms of B∗
2 (left-axis) or τ (right-axis)

obtained from the canonical simulations for the HCAY fluid; κ = 4 (solid
squares), 5 (solid circles), 6 (solid triangles), 7 (solid inverted triangles), 9
(solid diamonds), the AO fluid; η = 1.25 (left triangles), 1.67 (right triangles),
2.5 (hexagons), 3 (stars), 5 (pentagons), 10 (asterisks), and the SW fluid; λ

= 1.25 (empty squares), 1.20 (empty circles), 1.15 (empty triangles), 1.10
(empty inverted triangles), 1.05 (empty diamonds). Dashed lines are a guide
to the eye.

value for several short-ranged attractive systems. This means
that the critical point does not depend on the specific form
of the interaction potential, but only on the strength of the
attraction, which can be measured through the second virial
coefficient, B2.

The reduced second virial coefficient or sticky parame-
ter as a function of ρ/ρc at the liquid-vapor coexistence ob-
tained from the canonical simulations for all fluids studied
here is shown in Figure 13. One should note that the rep-
resentation of the phase diagram in terms of either B∗

2 or
τ seems to follow a universal behavior regardless of both the
functional form and the range of the potential. Taking into
account that the functional form of the interaction potential
(either AO or HCAY) is related to the physical mechanism,
i.e., entropic or energetic, that drives the phase separation one
comes to the conclusion that the topology of the equilibrium
coexistence of colloidal suspensions with short-ranged attrac-
tive interactions does depend neither on the physical mecha-
nism nor the attractive range. In particular, from the figure it
becomes visible that B∗

2 (T ∗
c ) and τ (T ∗

c ) show a slight variation
as the critical temperature is reached; −1.6 < B∗

2 (T ∗
c ) < −1

or 0.096 < τ (T ∗
c ) < 0.116. Therefore, the extended law of

corresponding states can be used as a simple predictor for the
critical temperature for a variety of short-ranged potentials by
solving the following equation:

τ (T ∗
c ) ≈ 0.1. (23)

One of the corollaries deduced from the extended law
is the possibility of mapping among different potentials by
matching their corresponding second virial coefficients, see,
e.g., Ref. 75. This possibility is displayed in Figure 14, which
shows the reduced critical temperature of both HCAY and AO
potentials as a function of the corresponding attraction range
if we use the correspondence of the potential parameters η

and κ according to Figure 1. We can observe that the simu-

FIG. 14. Critical temperature as a function of the interaction range for the
HCAY and AO fluids. Open and closed symbols are simulation data obtained
from the canonical method, respectively, whereas dotted and solid lines are
results of SCOZA and ESPSW, respectively.

lation data predict the same linear relationship, regardless of
the kind of interaction potential, which is also predicted by
SCOZA. DPT also predicts a linear dependence for both po-
tentials down to the interaction range where the discretiza-
tion of the potential leads to a single-well. Therefore, for
shorter interaction ranges ESPSW deviates from the linear de-
pendence and lower critical temperatures are predicted (data
not shown) because, as we explicitly mentioned, ESPSW has
not been extended to ranges λ < 1.1. However, above such a
point, it predicts the same physical properties for both poten-
tials, i.e., ESPSW satisfies the extended law although its pre-
dictions for the critical temperature are shifted to higher tem-
peratures compared to simulation data and SCOZA results.
From practical point of view, it is useful to have some empir-
ical relationships to determine the critical temperature from
the potential parameters. Thus, by fitting all the available sim-
ulation data, the range-dependence of the critical temperature
for the HCAY fluid is T ∗

c = 0.190(5) + 1.586(26)κ−1, and for
the AO fluid is T ∗

c = 0.201(3) + 0.656(6)η−1.
In the previous paragraph, we noticed that canonical sim-

ulations and SCOZA predict the same linear relationship for
the critical temperature for both the AO and Yukawa fluid as
a function of the interaction range if we use the mapping of
Figure 1 for the correspondence of the parameters η and κ ,
i.e., our results validate the corollary of the extended law of
corresponding states. Thus, we can look for an equivalent SW
potential, since it allows us to define quantitatively an effec-
tive attraction range. For this purpose, it is necessary to solve
the following equation:

λ3 = 1 − 3

∫ ∞
0 [1 − e−u(r∗)/kBTc ]r∗2dr∗

1 − eε/kBTc
, (24)

where r* ≡ r/σ and Tc can be estimated with Eq. (23).
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FIG. 15. Critical temperature as function of the effective interaction range λ

obtained from Eq. (24) for the HCAY, AO, and SW potentials. The critical
temperature has a quasi-linear dependence on λ for all types of fluids here
studied.

The critical temperature as a function of the effective
attraction range calculated by means of Eq. (24) is dis-
played in Figure 15. We compare our calculations for all
the data available for the HCAY, AO, and SW potentials.
As one can notice, all the data fall more or less onto one
line independent of the functional form of the interaction
potential. The range-dependence of the critical temperature is
T ∗

c = 0.289(1) + 1.961(59)(λ − 1). Hence, Eqs. (23)
and (24) provide a good estimate of the critical temperature
and the range of the effective attraction of a fluid where
the attractive contribution dominates and leads to a phase
separation.

C. Comparison with experimental data for lysozyme

One of the more used potentials for describing the phase
behavior of a protein in suspension is the Derjaguin, Landau,
Verwey, and Overbeek (DLVO) potential; this potential in-
cludes three kinds of interaction between particles: hard-core
repulsion, due to the excluded volume; a short-ranged attrac-
tion, given by the London forces, i.e., van der Waals inter-
actions, and a long-ranged interaction, which results of the
repulsion between the charged components of the system.
Clearly, the resulting potential is a complicated relation be-
tween the properties of the protein and its medium. However,
despite the complexity of the protein-protein potential, it is
possible to find a qualitative description of it. In fact, when
the repulsion is weak and the attraction dominates, it is possi-
ble to represent crudely the interaction potential in terms of a
HCAY fluid, see, e.g., Ref. 103.

Recently, Gögelein et al.103 studied, by means of both
static light scattering and a second-order thermodynamic per-
turbation theory of Barker and Henderon, the liquid-vapor and
liquid-solid transitions of lysozyme in aqueous environments
as function of salt, dimethyl sulfoxide (DMSO) and glycerol.
Authors found the following simple, but important, relations
for the protein-protein potential: the potential is attractive for
interparticle separations greater than the mean diameter, the

FIG. 16. Vapor-liquid coexistence expressed in terms of B∗
2 for lysozyme103

for different salt concentrations (filled symbols) and Monte Carlo simulations
(open symbols) for the HCAY fluid with variable range, κ . Solid lines are a
fit for the liquid and gas branches based on the Eqs. (6) and (7). For clarity,
the experimental curve for κ = 6 is shifted 0.45 units in the vertical direction
upwards.

salt concentration (cs) controls the width and depth of the po-
tential (see Figure 3 of Ref. 103), and the glycerol concen-
tration (cg) determines the potential width (see Figure 5 of
Ref. 103).

Gögelein et al.103 reported the phase diagram in terms
of the reduced second virial coefficient (see Figure 10(a) in
Ref. 103), which was obtained by using static light scat-
tering. In the vapor-liquid coexistence, they found a curve
with the same characteristics that we observed in Figure 13,
i.e., B∗

2 does not depend strongly on the attractive range
and B∗

2 (T ∗
c ) ≈ −1.8 in almost all the cases. This value is

slightly greater than the one predicted by Noro and Frenkel75

(B∗
2 (T ∗

c ) ≈ −1.5). Then, the experimental data will be shifted
to compare with our predictions, but this does not affect
the main conclusions of our work. Furthermore, authors103

showed that the protein-protein potential can be mapped onto
a HCAY fluid in the interval 4 ≤ κ ≤ 9 (see Figure 8 of
Ref. 103). Thus, for a direct comparison between experimen-
tal data and simulation results we use the same strategy.

A comparison of the lysozyme phase diagram for cs

= 0.7 and 0.9, no additive is added, with the one obtained
for the HCAY fluid with κ = 6 and 9, respectively, is shown
in Figure 16. For the sake of the comparison, the experimen-
tal curve for κ = 6 is shifted 0.45 units in the vertical di-
rection upwards. We can immediately observe a quantitative
agreement between experiments and simulations. Besides, it
becomes clear that the effect of salt is to screen the interac-
tion, i.e., an increase in the parameter κ . In addition, the va-
por phase does not modify considerably with the change in
the salt concentration, however, an increase of salt shifts the
liquid boundary to higher densities. Both effects are also cap-
tured by our computer simulations.

To compare our predictions with the experimental data
that include explicitly glycerol, we ignore the shape of the po-
tential and only take into account the attraction range replac-
ing the full potential (see Ref. 103) by a simple SW potential.
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FIG. 17. Vapor-liquid coexistence expressed in terms of B∗
2 for lysozyme at

0.7 M of salt and different concentrations of glycerol (filled symbols) and
Monte Carlo simulations for the SW fluid with variable range, λ. Solid lines
are a fit for the liquid and gas branches based on the Eqs. (6) and (7). For
clarity, experimental curves are also shifted 0.3 (cg = 0%), 0.45 (cg = 10%),
and 0.6 (cg = 20%) units in the vertical direction upwards.

As we stated previously, the SW can reproduce some of the
properties of complex fluids and allows us to manipulate the
effective range and strength. The comparison of the binodal
of the SW of variable range with the experimental data for the
cases cs = 0.7 and variable glycerol concentration (cg) is pro-
vided in Figure 17; experimental curves are also shifted 0.3
(cg = 0%), 0.45 (cg = 10%) and 0.6 (cg = 20%) units in the
vertical direction upwards. Again, a good agreement between
experiments and simulation predictions is observed, including
the critical point. The figure shows that the effect of glycerol
is to decrease the potential range among the proteins. This
affects particularly the extension of the liquid branch.

Hence, we here put of manifest that even for complex sys-
tems, such as the solution of lysozyme proteins, the particular
functional form of the potential is not important to determine
the liquid-vapor phase diagram, i.e., driving forces lead to the
same phase coexistence. Furthermore, the second virial coef-
ficient is a good indicator of the equilibrium coexistence and
Figure 15 is one of the more important results of this work,
since whether the critical temperature is known, it provides
straightforwardly information of both the well depth and the
effective range of the attraction.

IV. CONCLUSIONS

We have studied theoretically the phase behavior of col-
loidal systems. In particular, we investigated the gas-liquid
coexistence in the short-range regime. As model systems
we considered the hard-core attractive Yukawa and Asakura-
Oosawa fluids, which were mapped onto equivalent SW flu-
ids of appropriate range λ, within the regime 1.05 < λ <

1.25. We have confirmed that the coexistence curve is more
or less independent of the detailed functional form of the in-
teraction, but just depends on the value of the second virial
coefficient, B2. Thus, interestingly, both driving forces, i.e.,

energy and entropy, lead to the same phase behavior. We have
also compared our theoretical results with experimental data
for lysozyme proteins and obtained excellent agreement. This
indicates that although a protein solution is a very complex
system, some of its thermodynamic properties can be quanti-
tatively understood in terms of the physics of colloids. This is
of scientific and technological importance, since predictions
based on simple physical models are beneficial for the design,
synthesis and control of processes involving proteins.

Our calculations were based on both computer simula-
tions and theoretical approximations. We have found that the
Gibbs ensemble does not provide reliable results for simulat-
ing short-range fluids. In particular, we observed strong devi-
ations with respect to other simulation data in the interval κ

> 9 or η > 3, which, in terms of the equivalent SW fluid, cor-
responds to attractions of range λ < 1.1. However, the canoni-
cal ensemble method provided us a powerful and simple route
to evaluate the vapor-liquid coexistence without encountering
the problems associated with the range of the attraction. We
have also found that the theoretical approaches, i.e., the DPT
and SCOZA, work well in the colloidal domain; in particular,
SCOZA was able to predict—compared to simulation data—
accurate phase diagrams even in the critical region and it al-
lowed us to evaluate correctly the λ-dependence of the critical
temperature. In contrast to the SW fluid, where the SCOZA
predictions turned out to deteriorate for shorter ranges of the
interaction, SCOZA remained accurate for the AO and the
HCAY fluid down to the smallest ranges considered. In ad-
dition, we observed that the DPT is only limited by the use of
the chosen equation of state, since it is related to the grid size
employed to resolve the phase coexistence. As we stated in
the Introduction, the DPT is a second-order perturbation the-
ory that was originally proposed to study the phase behavior
of simple liquids. Despite its simplicity, we have shown here
that it can also be extended straightforwardly to the domain of
complex fluids. Furthermore, it has been recently generalized
to take into account explicitly polar interactions.89 Hence, it is
an ideal candidate to investigate the liquid-solid transition in
both colloidal and protein systems. Work along this direction
is currently in progress.
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