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Simple model systems with short-range attractive potentials have turned out to play a crucial role in
determining theoretically the phase behavior of proteins or colloids. However, as pointed out by D.
Gazzillo [J. Chem. Phys. 134, 124504 (2011)], one of these widely used model potentials, namely, the
attractive hard-core Yukawa potential, shows an unphysical behavior when one approaches its sticky
limit, since the second virial coefficient is diverging. However, it is exactly this second virial coeffi-
cient that is typically used to depict the experimental phase diagram for a large variety of complex
fluids and that, in addition, plays an important role in the Noro-Frenkel scaling law [J. Chem. Phys.
113, 2941 (2000)], which is thus not applicable to the Yukawa fluid. To overcome this deficiency of
the attractive Yukawa potential, D. Gazzillo has proposed the so-called modified hard-core attractive
Yukawa fluid, which allows one to correctly obtain the second and third virial coefficients of adhesive
hard-spheres starting from a system with an attractive logarithmic Yukawa-like interaction. In this
work we present liquid-vapor coexistence curves for this system and investigate its behavior close to
the sticky limit. Results have been obtained with the self-consistent Ornstein-Zernike approximation
(SCOZA) for values of the reduced inverse screening length parameter up to 18. The accuracy of
SCOZA has been assessed by comparison with Monte Carlo simulations. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4827936]

I. INTRODUCTION

During the last few years an increasing number of stud-
ies has focused on the understanding of the phase behavior
of systems with very short-ranged attractive interactions.1–8

Simple model systems with narrow attractive interactions,
like square-well or hard-core attractive Yukawa systems, have
turned out to play a crucial role when one tries to under-
stand the phase behavior of protein and colloidal solutions,
where the range of the effective interaction is significantly
smaller than the particle diameter that is of nano- or micro-
scopic size.9–11

An interesting result on systems with short-ranged attrac-
tions has been formulated by Noro and Frenkel (NF) in their
so-called extended law of corresponding states.12 According
to the NF scaling law, the details of the functional form of the
interaction potential are irrelevant in determining the struc-
ture and thermodynamics of fluids as long as the potential
is short-ranged, i.e., the interaction range is approximately
less than 15% of the particle diameter.13 Different functional
forms of the interaction yield the same behavior provided
that the following three properties of the potentials are iden-
tical: σeff, ε, B

∗
2 , where σ eff is the effective hard-sphere diam-

eter of the particles which is obtained by mapping the repul-
sive part of the interaction φ(r) onto an effective hard-sphere
(HS) diameter,14, 15 ε denotes the depth of the potential, i.e.,
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ε = φ(rmin), where rmin is the position of the minimum, and
B∗

2 = B2/B
HS
2 is the reduced second virial coefficient with

BHS
2 = 2πσ 3

eff/3 and

B2 = −2π

∫ ∞

0
(exp(−βφ(r)) − 1)r2dr,

where β = 1/kBT (kB being Boltzmann’s constant and T
the absolute temperature). Therefore, all fluids with short-
ranged interactions should yield the same thermodynamic and
structural properties when compared at the same value of
(ρ∗, T ∗, B∗

2 ), where ρ∗ ≡ ρσ 3
eff and T∗ ≡ kBT/ε are the re-

duced density and temperature, respectively. Although it is
not a rigorous law it seems to work remarkably well. A sim-
ple corollary of NF’s scaling law was observed in a preceding
study by Vliegenthart and Lekkerkerker16 who found empir-
ically that, although the critical temperature T ∗

c strongly de-
creases as the interaction range vanishes, the second virial co-
efficient B∗

2 (T ∗
c ) evaluated at the critical temperature remains

practically constant, i.e., B∗
2 (T ∗

c ) ∼ −1.5, a relation that can
be used to give a robust estimate for the critical temperature
of a short-ranged system. In subsequent work, it was however
found that B∗

2 (T ∗
c ) ∼ −1.5 is an approximation since B∗

2 (T ∗
c )

is depending on the interaction range.1

Various methods of statistical mechanics have been ap-
plied to study systems with short-ranged interactions: com-
puter simulations and numerical or analytical theoretical ap-
proaches including theories based on the Ornstein Zernike
(OZ) relation supplemented with a closure relation. Most
of the studies have been dealing with square-well (SW)
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potentials1, 7, 8

φSW(r) =

⎧⎪⎨
⎪⎩

∞ r < σ

−ε σ ≤ r ≤ λσ

0 r > λσ

, (1)

where λ is the reduced range of the attraction, or hard-core
attractive Yukawa potentials (HCY)2, 3, 6

φYuk(r) =
{

∞ r < σ

−εσ exp(−z(r − σ ))/r r ≥ σ
, (2)

where z is the inverse screening length.
In particular, an accurate localization of the critical tem-

perature and the liquid-vapor coexistence curve becomes very
difficult in the regime of very short-ranged interactions. How-
ever, in this regime one can refer to the so-called adhesive
or sticky hard-sphere (SHS) system, a model introduced by
Baxter17 that can be interpreted as a system with vanishing
interaction range and an interaction strength that is diverging
in such a way that B∗

2 remains finite. Baxter17 started from the
SW potential,

φBaxterSW(r) =

⎧⎪⎨
⎪⎩

∞ r < σ

−ε σ ≤ r ≤ σ (1 + δ)

0 r > σ (1 + δ)

, (3)

where ε = β−1 ln (1 + 1/12τδ). In the sticky limit, δ → 0,
one obtains B∗

2 = 1 − 1/4τ , where τ is the stickiness param-
eter. Analytical results are available for the SHS system17

and Monte Carlo (MC) simulations have been performed by
Miller and Frenkel20, 21 that provided an estimate of the crit-
ical point parameters τ c = 0.1133(5) and ρ∗

c = 0.508(190).
The approximate analytic solution within the Percus Yevick
(PY) approximation,17 however, suffers from decreasing ac-
curacy at high densities and thermodynamic inconsistency
yielding coexistence curves determined via the compressibil-
ity and the energy routes that differ significantly; the coex-
istence curve obtained from the energy route being in better
agreement with simulation results.

One possibility to obtain the SHS limit was proposed
by Baxter17 and starts from the SW interaction of the form
above (see Eq. (3)). If one starts instead with the simple HCY
potential of Eq. (2), where ε = zσε0/12 and ε0 defines the
energy scale, and taking the limit z → ∞ keeping ε0 con-
stant, so that again the interaction range is vanishing and the
strength is diverging, Gazzillo has shown for the first time in
Refs. 18 and 19 and emphasized recently22 that the exact HCY
B∗

2 is diverging so that the latter model is ill defined. Gazz-
illo also introduced an alternative model for adhesive hard-
spheres called the modified HCY (mHCY) and which is ob-
tained by taking the limit of vanishing range of the following
logarithmic HCY interaction22

φmHCY(r) =
⎧⎨
⎩

∞ r < σ

−β−1 ln
{
1 + 1

12T ∗ zσ
2 exp(−z(r − σ ))/r

}
r ≥ σ

, (4)

where T∗ ≡ kBT/ε0 can be identified as the stickiness param-
eter τ . Asymptotically, i.e., for r → ∞, the potential is iden-
tical to a HCY potential. By taking the sticky limit z → ∞,
B∗mHCY

2 remains finite and yields B∗SHS
2 = 1 − 1/4τ . Also the

third virial coefficient of Baxter’s SHS system is correctly
reproduced.18 It is important to emphasize that the equiva-
lence of Baxter’s SHS system and the sticky limit z → ∞
of the mHCY system has been proven only up to this level
and it is still an open question whether the two models fully
coincide.

The thermodynamic inconsistency present in the PY so-
lution of the SHS model, which is not able to provide quanti-
tative predictions of the binodal curve, is no longer present
when one switches to the well-known self-consistent Orn-
stein Zernike approximation (SCOZA),23, 24 which enforces
consistency between the energy and compressibility route.
SCOZA has shown to remain successful in the critical region,
where usually conventional liquid-state theories fail, and has
turned out to remain accurate also for short-ranged HCY and
Asakura-Oosawa (AO) potentials.3, 5 Recently, SCOZA was
also tested for narrow SW potentials and in the sticky limit.8

However, in the study by Pini et al.8 it was seen that the over-
all agreement with simulation data is not of the same accuracy
as for the HCY potential. Results – especially the liquid-vapor

coexistence curve – turned out to be highly sensitive to the
boundary condition at high density ρ∗

max ≡ ρmaxσ
3, which is

needed when one solves the SCOZA partial differential equa-
tion (PDE)—a fact that was already noticed in a preceding
study25 and confirmed in Ref. 8. However, this strong depen-
dence on the high density boundary condition seems to be less
dramatic when one switches to different forms of the interac-
tion like the HCY,3 the AO,5 and the mHCY potential. So, in
order to obtain accurate results close to the sticky limit it is
more advantageous to apply SCOZA to the second model po-
tential of Eq. (4) proposed by Gazzillo,22 which produces – in
the limit of vanishing interaction range – the second and third
virial coefficients of the SHS system.18 We have seen that for
narrow mHCY systems the SCOZA solution is still depending
on the high-density boundary condition, but the dependence is
much less dramatic and results are no longer sensitive with re-
spect to shifting the high density boundary condition to higher
densities if we use ρ∗

max = 1.15 for z∗ ≡ zσ values up to 18.
A possible explanation for this peculiar difference of the ac-
curacy of SCOZA for the SW and mHCY might be the fact
that for the SW fluid of equivalent range the binodal curve
is broader—especially the liquid branch is shifted to higher
densities which could explain the larger sensitivity to the high
density boundary condition as already speculated in Ref. 8.
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In this article, we present SCOZA results for the mHCY
system up to z∗ = 18 which corresponds to a SW system with
δeff = 0.056 if we map the mHCY system at its T ∗

c onto an
equivalent SW system according to NF’s scaling law. This in-
teraction range is closer to the sticky limit than in the study
of Pini et al.,8 where the case δ = 0.1 was the smallest in-
teraction range considered. Results are compared with NVT
MC simulations, i.e., simulations in the canonical ensemble
where you fix the number N of particles, the volume V, and
the temperature T of the system. We used the slab method to
assess the accuracy of SCOZA predictions.

In Ref. 8 it was speculated that B∗
2 might be diverging in

the sticky limit of the SW system which seems to be a pe-
culiarity of the SCOZA closure. Results for the mHCY sys-
tem for values of z∗ up to 18 do not support this speculation.
Thus we treat in this article the cases z∗ ≤ 18 where this pe-
culiarity of SCOZA – if present – is still not relevant and MC

simulations are also still feasible. The investigation of z∗ val-
ues closer to the sticky limit with a nonlinear SCOZA closure
relation that might circumvent the divergence of B∗

2 is left to
future work.

The article is organized as follows. In Sec. II we intro-
duce the logarithmic Yukawa potential. In Sec. III we present
the SCOZA method for this potential. In Sec. IV details of
the MC simulations are presented, and results are discussed
in detail in Sec. V. Our main findings are finally summarized
in Sec. VI.

II. THE LOGARITHMIC YUKAWA POTENTIAL

Gazzillo18, 22 has shown that the correct second and third
virial coefficients of the adhesive hard-sphere model can be
obtained by taking the limit z → ∞ of the following mHCY
potential:

φ∗mHCY(r) = φmHCY(r)

ε0
=

{∞ r < σ

−T ∗ ln
{
1 + 1

12T ∗ zσ
2 exp(−z(r − σ ))/r

}
r ≥ σ

, (5)

where T ∗ = kBT
ε0

corresponds to Baxter’s stickiness parameter
τ . The logarithmic part is the analog to the logarithmic well
depth in Baxter’s original SW potential of Eq. (3). The mHCY
potential has the same behavior at large distances as the HCY
potential where – according to the mathematical identity ln (1
+ x) ∼ x for x 	 1 – one obtains

φ∗mHCY(r) ∼ −zσ 2

12
exp(−z(r − σ ))/r for r 
 σ. (6)

The difference between the HCY and the mHCY potential
is largest at the contact.22 With this definition of the poten-
tial, B∗

2 (T ∗) no longer diverges in the sticky limit z → ∞ but
takes the value of Baxter’s SHS system B∗

2 (T ∗) = 1 − 1/4T ∗.
In contrast to a pure HCY system now the potential is explic-
itly depending on the temperature. Thus the functional form
changes with temperature which has turned out to be diffi-
cult for the numerical solution of the SCOZA PDE, where
one starts at infinite temperature and integrates down to a fi-
nite temperature. During the integration with respect to β the
interaction potential is changing its form. Only in the high
temperature regime one recovers again a simple temperature-
independent HCY potential.

III. SCOZA

SCOZA is a liquid-state theory that has proven to give
accurate predictions of the liquid-vapor coexistence curves
and even in the critical region, where SCOZA exhibits some
form of scaling with non-classical critical exponents.26 For
a detailed description of SCOZA and its numerical solution
procedure we refer the reader to the literature23–25 and just
outline here the main ideas of SCOZA. The main ingredient
of SCOZA is the self-consistency requirement: most conven-

tional microscopic liquid-state theories like integral equation
theories or perturbation theories suffer from a lack of ther-
modynamic consistency, which means that the different sta-
tistical mechanical routes (such as the energy, the virial, and
the compressibility route) from the structural properties to
the thermodynamics yield more or less different results.27, 28

In SCOZA, however, self-consistency between the different
routes is enforced.

The theory has been formulated in different versions for
fluids interacting via a spherically symmetric pair potential
u(r) that consists of a hard-core of diameter σ and some at-
tractive tail. All different versions of SCOZA grew out of the
mean-spherical approximation (MSA), which like all integral
equation theories is based on the Ornstein Zernike relation27

h(r) = c(r) + ρc ⊗ h(r) (7)

that defines the direct correlation function c(r) in terms of
the total correlation function h(r) and ⊗ denoting a convo-
lution integral. A closed theory is obtained by supplement-
ing Eq. (7) with a so-called closure relation, i.e., an approxi-
mate relation that involves h(r), c(r), and the interaction u(r).
The MSA-type closure relation of SCOZA, considered in this
work, amounts to setting

g(r) = 0 for r < σ,

c(r) = A(ρ, β)u(r) + cHS(r) for r > σ ;
(8)

where g(r) = h(r) − 1 is the pair distribution function,
cHS(r) is the direct correlation function of the hard-core
reference system, given, for example, by the Waisman
parameterization,29 and A(ρ, β) is a function of the thermo-
dynamic state (ρ, β). The first relation, the so-called core
condition, is exact and corresponds to the fact that particles
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are not allowed to overlap. The expression for c(r) is an ap-
proximation and implies that c(r) has the same range as the
potential—an ansatz that is usually referred to as the OZ ap-
proximation, thus the name self-consistent Ornstein Zernike
approximation. In contrast to the MSA, where A(ρ, β) = −β,
here A(ρ, β) is not fixed a priori but is instead determined to
ensure thermodynamic consistency between the compressibil-
ity and the energy routes: assuming that the thermodynamics
stems from a unique Helmholtz free energy the consistency
condition can be expressed as

∂

∂β

(
1

χred

)
= ρ

∂2uex

∂ρ2
, (9)

where χ red = ρkBTχT is the reduced isothermal compressibil-
ity given by the fluctuation theorem

1

χred
= 1 − ρc̃(k = 0), (10)

where c̃(k) denotes the Fourier transform of c(r), and
uex ≡ Uex

V
is the excess (over ideal) internal energy per vol-

ume given by the energy equation

Uex

V
= uex = 2πρ2

∫
g(r)φ(r)r2dr. (11)

The consistency equation (9) supplemented by the OZ rela-
tion (7), the closure relation (8), the compressibility route
(10), and the energy route (11) yield a partial differential
equation for A(ρ, β).

When χ red in Eq. (9) is expressed as a function of uex

within the closure relation (8) the SCOZA PDE turns into a
PDE of diffusion type for uex,

B(ρ, uex)
∂uex

∂β
= ρ

∂2uex

∂ρ2
, (12)

with a diffusion coefficient B(ρ, uex) ≡ ∂
∂uex ( 1

χred ). The nu-
merical solution procedure of SCOZA and the boundary con-
ditions used in this work are described in detail in Ref. 25 and
the finite-difference algorithm used for the numerical integra-
tion of the PDE is described in the appendix of Ref. 24.

For a long time, applications of SCOZA were limited
due to historical and technical reasons; the complexity of the
SCOZA formalism and the heavy numerical solution algo-
rithm. For example, in the case of continuum fluids, applica-
tions were initially restricted to the HCY fluid where one can
make use of the extensive semi-analytic MSA studies avail-
able. These semi-analytic expressions lead to simplifications
of the numerical solution of SCOZA and thus a consider-
able reduction of computational cost. The success of SCOZA
for these few model systems has motivated to broaden its
applicability.5, 25, 30–36 Nowadays, SCOZA is solvable for arbi-
trary hard-core potentials, like the AO or the SW potential.5, 25

However, in these cases the determination of the diffusion co-
efficient B(ρ, u) must be done fully numerically and comes,
of course, at a substantial computational cost.

When solving SCOZA for the modified Yukawa system
with explicitly temperature-dependent potential, it turned out
that the implicit finite difference algorithm became unstable
when integrating the PDE with respect to the inverse tem-
perature. So we had to turn to a different solution procedure

which was coming at substantial computational cost: in or-
der to determine the coexisting densities ρ∗

v and ρ∗
l at a given

reduced temperature T∗ we solved the SCOZA PDE by in-
tegrating from infinite temperature down to this temperature
keeping the potential fixed at the functional form correspond-
ing to this temperature T∗. This solution procedure was re-
peated for different temperature values to obtain the whole
coexistence curve. We have redone the calculations for higher
values of ρ∗

max – where the high density boundary condition
is imposed – to make sure that the boundary condition was
chosen at a density that is large enough that the SCOZA solu-
tion is no longer sensitive to the high density boundary condi-
tion. For the cases z∗ = 1.8, 5, 8, 10 a boundary condition at
ρ∗

max = 1 turned out to be sufficient, for z∗ = 12, 15 we were
using ρ∗

max = 1.1 and for the largest z∗ value considered in this
work, i.e., z∗ = 18 we used ρ∗

max = 1.15. According to NF’s
scaling law a value of z∗ = 18 corresponds to an effective in-
teraction range of δeff ∼ 0.056 at the critical temperature that
was obtained with SCOZA. For a SW system with interac-
tion range of δ = 0.1, however, it turned out in the study of
Pini et al.8 that a much larger ρ∗

max, namely ρ∗
max = 1.4, was

necessary. So compared to the SW system we are, on the one
hand, able to treat shorter ranged systems with SCOZA when
dealing with the mHCY system, and, on the other hand, the
solution of the PDE is less sensitive to the boundary condition
at high density.

Close to the critical region the numerical solution of the
SCOZA PDE also turned out to be sensitive to the parameters
used in the Fast Fourier Transform (FFT) technique which is
required when solving numerically the OZ integral equations.
This sensitivity turned out to increase when the interaction
range decreased. While for the longer-ranged systems with
z∗ = 1.8 and z∗ = 5, N = 1024 grid points and a grid spac-
ing of r∗ = 0.01 were sufficient to represent the distribution
functions, we had to switch to N = 2048 grid points and a
grid spacing of r∗ = 0.005 for the shorter-ranged cases con-
sidered. We carefully checked whether results changed when
further reducing the grid size to r∗ = 0.002 and using
N = 8192 grid points and found that the critical point tem-
perature changed by less than 0.05% for the system with the
shortest interaction range considered, i.e., z∗ = 18.

IV. MONTE CARLO COMPUTER SIMULATIONS

We also study the phase coexistence by means of Monte
Carlo computer simulations. In particular, we use the method
developed by Chapela et al.37 together with the replica ex-
change method.38–40 In our simulations, we construct a paral-
lelepiped whose dimensions are Ly = Lx and Lz = 8Lx, where
Li with i = x, y, z is the edge in the i-direction. In the cen-
ter of the box, we place particles in a dense phase (phase I),
surrounded by a more diluted phase (phase II). We then dis-
tribute 2727 particles in the box in such a way that the re-
duced total bulk density is always ρ∗ > 0.37 and the densities
in the dense and diluted phases are ρ∗

I > 0.93 and ρ∗
II < 0.03,

respectively. In order to prepare the initial configuration we
first perform a conventional MC simulation for the phase II,
considering that particles interact only through the hard
sphere potential. Then, we generate a homogeneous fluid
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consisting on 2592 particles enclosed in a volume equal to 3/8
of the total volume of the simulation box. With this method
one can prevent the crystallization of the dense phase. The re-
maining particles are distributed in a regular network filling
the available space.

The replica exchange method is implemented as follows.
We generate a set of 15 non-interacting replicas {Si} of the
system described above, but at different temperatures T ∗

i and
particles interacting through the full potential described in
Eq. (5). Temperatures of each replica are chosen in such a way
that T ∗

1 < T ∗
2 < . . . < T ∗

15. Since the mHCY is a temperature-
dependent potential, one has to take into account that the po-
tential is different for each replica. In each system, the states
are generated according to the next scheme: we randomly
choose a particle which can be either displaced in the stan-
dard way or placed at a random position of the simulation box.
The later operation, proposed by Lomakin et al.,41 is useful to
identify if the temperature of a given system is above the crit-
ical value and to avoid those T∗-values in the simulation. The
acceptance ratio of standard particle displacement is fixed to
30%, while the acceptance of the second displacement could
be very low. Eventually, we attempt to interchange particle
configurations between replicas with a similar T∗. The accep-
tance probability of a configuration swap between systems is
given by42

p = min
(
1, exp

[
(βi − βi+1)

(
U

(
rN
i

) − U
(
rN
i+1

))])
, (13)

where U (rN
i ) is the total potential energy of system Si and β i

= (kBTi)−1. The choice of the temperature range must ensure
that the system at the highest temperature is out of the region
of local minima or metastable states, i.e., the highest temper-
ature must lie in the regime where no liquid-vapor transition
is expected. Both the number of replicas and the tempera-
ture difference between replicas affect the acceptance ratio
for swapping configurations.43 In our simulations, we observe
that the acceptance was around 10%.

The simulation is divided in two main stages. In the first
one, the system forms either a gas or liquid phase according to
its temperature (below the critical one) and its density and, in
the second one, it exhibits a phase separation. Each stage con-
sists of 108 MC steps, 82% are attempts to displace particles,
15% attempts to relocate particles, and the rest are attempts
to swap particle configurations. During the second stage, we
measure the density across the simulation box every 50 000
MC steps. In addition, we perform the simulation with ten
different seeds, which improves our statistics and allows us to
construct a smoother density profile ρ(z). From this profile it
is straightforward to calculate the densities of the coexisting
phases.

To estimate the critical point, we use a scaling type law
and the law of rectilinear diameters. According to this proce-
dure the critical point parameters ρc and Tc are fitted to the
following equations:44

ρ∗
l − ρ∗

v = C1
(
T ∗

c − T ∗)β
, (14)

ρ∗
l + ρ∗

v

2
= ρ∗

c + C2
(
T ∗

c − T ∗), (15)

0 0.2 0.4 0.6 0.8
ρ∗

0.08

0.1

0.12

0.14

0.16

T
*

z*=1.8
z*= 5
z*= 8

FIG. 1. Phase diagram of the mHCY fluid for reduced inverse screening
length z∗ = 1.8, z∗ = 5, and z∗ = 8, SCOZA (full lines), NVT computer
simulations (circles): open circles for the coexistence curves and filled cir-
cles for the critical points—the error bars do not exceed the symbol size.

where ρ∗
l and ρ∗

v are the coexisting liquid and vapor densities,
respectively, at given temperature T∗, β = 0.325 is the critical
exponent, and C1 and C2 are two further fit parameters. We
have used the four coexistence points that are closest to the
critical point.

V. RESULTS AND DISCUSSION

A. Phase coexistence

In Figures 1 and 2, the phase diagram of the modified
Yukawa potential for different values of the reduced inverse
screening length z∗ is shown. Furthermore, the SCOZA

0 0.2 0.4 0.6 0.8 1
ρ∗

0.08

0.09

0.1

0.11

0.12

T
*

SHS MC Largo et al.
SHS MC Miller and Frenkel
z*= 8
z*=10
z*=12
z*=15
z*=18

FIG. 2. Phase diagram of the mHCY fluid for reduced inverse screening
length z∗ = 8, z∗ = 10, z∗ = 12, z∗ = 15, and z∗ = 18, SCOZA (full lines),
NVT computer simulations: open circles for the coexistence curves and filled
circles for the critical points—the error bars do not exceed the symbol size.
We also show MC simulations by Miller and Frenkel20, 21 for the SHS system
(open upward triangles for the coexistence curve and full upward triangle for
the critical point) and an estimate of the critical point for the SHS by Largo
et al.1 (full downward triangle).
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TABLE I. Reduced inverse screening length z∗ and reduced effective inter-
action range δeff of the equivalent SW system; reduced critical point param-
eters of SCOZA: temperature, density; reduced critical point parameters of
NVT simulations: temperature, second virial coefficient, and density.

SCOZA MC

z∗ δeff T ∗
c ρ∗

c T ∗
c B∗c

2 ρ∗
c

1.8 0.532 0.1557 0.302 0.1484(4) − 1.621(6) 0.304(4)
5 0.198 0.1221 0.374 0.1155(2) − 1.599(5) 0.369(2)
8 0.124 0.1189 0.418 0.11135(2) − 1.5258(4) 0.408(4)
10 0.100 0.1189 0.441 0.1111(2) − 1.475(6) 0.42(1)
12 0.083 0.1193 0.460 0.1119(3) − 1.420(6) 0.443(3)
15 0.067 0.1198 0.480 0.1119(4) − 1.383(9) 0.467(6)
18 0.056 0.1200 0.500 0.1151(4) − 1.293(8) 0.498(3)

estimates for the critical parameters ρ∗
c and T ∗

c are listed in
Table I for the different interaction ranges considered together
with NVT estimates obtained according to Eqs. (14) and
(15). As we decrease the range of the interaction, i.e., with
increasing z∗, the critical temperature shows a non-monotonic
behavior: the critical temperature first decreases for z∗ values
increasing from z∗ = 1.8 up to ∼8 and then slightly increases
again. T ∗

c obtained within SCOZA takes more or less a con-
stant value of T ∗

c = 0.12 for z∗ values larger than 8. SCOZA
overestimates the critical temperature, a fact that was also
observed in the study by Pini et al.8 for the SW system. On
the other hand, for SCOZA the behavior of the critical point
density is monotonic: with decreasing interaction range,
i.e., increasing z∗, it also increases from ρ∗

c = 0.302 for z∗

= 1.8 to ρ∗
c = 0.500 for z∗ = 18, which was the largest

z∗ value considered in this work. In contrast to the critical
temperature, which takes approximately a constant value for
z∗ ≥ 8, the critical density does not take a constant value
even for the smallest interaction ranges considered. So the
limiting value of the SHS system is not reached yet, how-
ever, the critical density ρ∗

c = 0.500 is already close to
ρ∗

c = 0.508(190), which was predicted by MC
simulations20, 21 for the SHS system. The simulation re-
sults for T ∗

c show the same non-monotonic behavior. The MC
estimates for ρ∗

c also increase with z∗ and the limiting value of
the SHS is again not reached yet. As z∗ increases from 1.8 to 8
in Figure 1, the coexistence curve shifts to lower temperature
and for the case z∗ = 8 the liquid-vapor branch exhibits an
unusual behavior not present in the usual Yukawa potential:
the coexistence curve broadens and intersects the other
coexistence curves. This behavior is due to the fact that now
the mHCY is starting to show stronger deviations from the
Yukawa potential and the attraction is smaller (see Figure 1 of
Ref. 22). Due to the lower attraction in the mHCY system the
coexisting density shifts to higher densities. MC results show
the same tendency. They quantitatively agree with SCOZA
predictions for the vapor and liquid branch. In Figure 2
we show the phase diagrams of the mHCY system for z∗

= 8 up to z∗ = 18. While the vapor branch predicted by
SCOZA hardly changes, the liquid branch shifts to higher
densities when increasing z∗ and does not show the tendency
to converge. SCOZA seems to overestimate the liquid branch.
The shift of the liquid branch to higher densities is also

0 5 10 15 20
z*

0.1

0.12

0.14

0.16

T
c*

mHCY SCOZA
mHCY MC

FIG. 3. The critical temperature T ∗
c as a function of the inverse screening

length parameter z∗ for the mHCY model using SCOZA (full diamonds) and
MC simulations (open circles).

visible in the simulations. We also show the MC predictions
by Miller and Frenkel20, 21 and the critical point estimate by
Largo et al.1 for the SHS limit.

In Figures 3 and 4 we show the critical parameters T ∗
c

and ρ∗
c as a function of the inverse screening length z∗. Both

simulations and SCOZA results for T ∗
c show a non-monotonic

behavior. As z∗ increases T ∗
c first decreases and then increases

again. SCOZA is, in general, overestimating the critical tem-
perature in a systematic way. The behavior is different for the
critical density, where SCOZA and MC values are increasing
with z∗. Again SCOZA is overestimating the critical parame-
ter in a systematic way. For the longest and shortest interac-
tion range considered, i.e., z∗ = 1.8 and z∗ = 18, the agree-
ment is perfect.

B. Sticky limit

In Table I, we also list the reduced second virial coeffi-
cient for the mHCY system given by

B∗mHCY
2 (T ∗, z∗) = 1 − 1

4T ∗

(
1 + 1

z∗

)
, (16)

0 5 10 15 20
z*

0.3

0.35

0.4

0.45

0.5

ρ c*

mHCY SCOZA
mHCY MC

FIG. 4. The critical density ρ∗
c as a function of the inverse screening length

parameter z∗ for the mHCY model using SCOZA (full diamonds) and MC
simulations (open circles).
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FIG. 5. Reduced second virial coefficient B∗
2 (T ∗

c ) at the critical point as a
function of the effective interaction range δeff (see text) for the MC simu-
lations of the mHCY system (circles) and as a function of the range δ = λ

− 1 of the SW system. For the latter system data are taken from Ref. 1 (open
triangles) and Ref. 8 (squares). Also shown are the estimates for the SHS sys-
tem from Refs. 20 and 21 (full upward triangle) and Ref. 1 (full downward
triangle).

at the critical point, i.e., B
∗mHCY,c
2 ≡ B∗mHCY

2 (T ∗
c , z∗). To ob-

tain the critical second virial coefficient B
∗mHCY,c
2 for the

mHCY system we simply included in Eq. (16) the critical
point temperature T ∗

c determined with MC simulations. B∗c
2

obtained from SCOZA is only known for SW and square-
shoulder systems where it is identical to the exact one,8 other-
wise it is unknown and probably different from the exact one.
In order to derive an effective interaction range δeff for the
mHCY system, we have applied NF’s scaling law at the crit-
ical temperature of the mHCY system: it is straightforward
to show that the reduced second virial coefficient of the SW
potential of Eq. (1) is

B∗SW
2 (T ∗) = 1 − (eβε − 1)(λ3 − 1). (17)

According to NF’s scaling law, the mHCY fluid at its crit-
ical temperature T ∗

c should be equivalent to a SW fluid at
the same T ∗

c if the second virial coefficient is identical. We
furthermore have to take into account that the well depth of
both potentials has to be identical. Therefore, we have to in-
sert the potential minimum of the critical mHCY system, i.e.,
βcε = −βcφ

mHCY(σ, T ∗
c ) = ln(1 + z∗

12T ∗
c

) in Eq. (17) and we
finally obtain the effective range of an equivalent SW fluid at
the critical point temperature T ∗

c :

λ3
eff = (1 + δeff)

3 = 1 + (
1 − B

∗mHCY,c
2

)12T ∗
c

z∗

= 1 + 3

z∗

(
1 + 1

z∗

)
. (18)

This effective range δeff turns out to be fully independent of
the temperature for the mHCY fluid and it is also shown in
Table I.

The second virial coefficient at the critical point is plotted
as a function of the effective SW range δeff for the equivalent
mHCY system and as a function of δ for the SW system of
Eq. (1) in Figure 5. For the latter we have used both simula-

tion results of Largo et al.1 (see Table I of this reference) and
SCOZA results by Pini et al.8 (see Table I therein). We used
the critical temperatures in the tables and Eq. (17) to obtain
B

∗SW,c
2 = 1 − (e1/T ∗

c − 1)((1 + δ)3 − 1).
Also shown in Figure 5 are the results for the SHS system

from Refs. 20 and 21, and 1. From the figure, it becomes visi-
ble that B2 is not constant for short-ranged potentials which is
contradicting the criterion of Vliegenthart and Lekkerkerker16

that at the critical temperature B∗
2 (T ∗

c ) ∼ −1.5 remains practi-
cally constant. The behavior of B∗

2 (T ∗
c ) obtained for the differ-

ent systems and via all methods is in semi-quantitative agree-
ment. In all cases, B∗

2 (T ∗
c ) increases as δ decreases. For the

SW system SCOZA results by Pini et al.8 and simulations
by Largo et al.1 are in perfect agreement for δ ≥ 0.3. The
result obtained from the mHCY system for δeff = 0.532 de-
viates from the other results strongly, but in this case the sys-
tem cannot be considered as short-ranged and is out of the
scope of NF’s scaling law. As δeff decreases NF seems to work
since deviations are decreasing especially around δeff = 0.067.
Nevertheless the simulation results for the equivalent mHCY
of this work and of Largo et al.1 for δ < 0.2 show devia-
tions. In the case of the simulation results for the mHCY work
we cannot conclude what the fate of B∗

2 (T ∗
c ) is in the limit δ

→ 0 since the simulations are restricted to δ > 0.05. The pre-
diction of the liquid-vapor coexistence curve via simulations
for δ < 0.05 was not possible because crystallization pre-
vented us to obtain a homogeneous liquid phase. More careful
simulations for short-ranged potentials are required here.

In Figures 6 and 7 we compare the predictions of the crit-
ical density ρ∗

c and critical temperature T ∗
c as a function of

the effective range δeff for the mHCY system and as a func-
tion of δ for the SW system. In order to compare the criti-
cal temperatures we had to rescale the SCOZA predictions
for the mHCY system according to T ∗

c → T ∗
c /φ∗mHCY(σ )

= 1/ ln(1 + z∗/12T ∗
c ). Fig. 7 shows SCOZA predictions and

MC estimates for T ∗
c . For δ ≤ 0.2 the SCOZA predic-

tions agree well with the simulation results for the mHCY

0 0.2 0.4 0.6 0.8
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, δ

0.2

0.3
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SW MC Largo et al.
SW SCOZA Pini et al.
SHS MC Miller and Frenkel
SHS MC Largo et al.
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FIG. 6. Critical density ρ∗
c as a function of the effective range δeff for the

mHCY model using SCOZA (diamonds) and MC simulations (circles) and
as a function of δ for the SW system. For the latter system the data are taken
from Ref. 1 (open triangles) and Ref. 8 (squares). We also included the cor-
responding values for the SHS system from Refs. 20 and 21 (full upward
triangle) and Ref. 1 (full downward triangle).
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FIG. 7. The critical temperature T ∗
c as a function of the effective range δeff

for the mHCY model using SCOZA (diamonds) and MC simulations (circles)
and as a function of δ for the SW system. For the latter system the data are
taken from Ref. 1 (open triangles) and Ref. 8 (squares). We also included the
corresponding values for the SHS system from Refs. 20 and 21 (full upward
triangle) and Ref. 1 (full downward triangle).

system, while slight discrepancies appear for the largest δ

value. For δ < 0.15 the SCOZA and MC predictions for the
mHCY fluid are in perfect agreement with the simulation
results for the SW fluid, which confirms again that the NF
scaling law is working here for short-range potentials whose
attraction range is smaller than 15%.13 In summary, we can
conclude that, close to the sticky limit, SCOZA slightly over-
estimates the critical point temperature T ∗

c and the critical
density ρ∗

c when compared with MC simulations for the
mHCY fluid, the discrepancy on ρ∗

c being larger than that on
T ∗

c . Similar observations were made for the SW system in
Ref. 8. Furthermore, the tendency of SCOZA for T ∗

c in the
sticky limit is clearer than that for ρ∗

c .

VI. CONCLUDING REMARKS

In this work, we theoretically studied the phase behav-
ior of the modified attractive hard-core Yukawa fluid that was
introduced by Gazzillo22 as a model potential and that does
not exhibit a diverging second virial coefficient in the limit of
vanishing interaction range and infinite interaction strength; it
allows one to correctly reproduce B2 and B3 of Baxter’s SHS
system. We based our study on the solution of SCOZA for
the modified attractive hard-core Yukawa system and concen-
trated on the system close to the sticky limit, i.e., for inverse
screening lengths up to z∗ = 18. Using the Noro-Frenkel ex-
tended law of scaling, we mapped this system at its critical
point onto an equivalent SW fluid with an effective range and
found that Noro-Frenkel’s scaling law works remarkably well
for interaction ranges up to 15% of the particle diameter, i.e.,
the SCOZA predictions for the critical temperatures and crit-
ical second virial coefficients were found to be in good agree-
ment with simulation results for a square-well system of an
effective interaction range obtained from NF’s scaling law.
Our results for the phase diagram and the critical parameters
close to the sticky limit were explicitly compared with Monte

Carlo computer simulations and good overall agreement was
found.

We have demonstrated that compared to the SW model,
the mHCY model allows one to obtain reliable SCOZA pre-
dictions much closer to the sticky limit. While for the first
system the results are no longer reliable for δ < 0.1, this is
not the case for the mHCY system studied here. This might
be due to the fact that the coexistence curve of the equivalent
SW fluid is broader and the SCOZA solution is more sensitive
to the choice of the high-density boundary condition. For the
screening parameters considered here, we do not find any evi-
dence that SCOZA yields a diverging second virial coefficient
as speculated in Ref. 8 for the SW system. So a divergence of
B2 – if present – will be relevant only for very short-ranged
potentials closer to the sticky limit.
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