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We introduce a parametrisation of the direct correlation function for the square-shoulder fluid and demonstrate
that this parametrisation is in quantitative agreement with the numerical solution of the Ornstein–Zernike
equation within the Percus–Yevick approximation. Moreover, the radial distribution function obtained from the
parametrisation reproduces quantitatively Monte Carlo simulation data. Our results show that the
parametrisation is accurate over a large regime of densities for different interaction ranges and potential
strengths.
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1. Introduction

During the last few decades, so-called discrete potential
fluids (DPFs) have been used as simple models to
investigate a large variety of both simple and complex
fluids, like water [1], methanol [2], polymers [3],
electrolytes [4], among others. Moreover, discrete
potentials have been incorporated in thermodynamic
perturbation-like theories [5,6] and are able to capture,
in a simple way, the main properties of continuous
potentials [7].

The simplest and mostly investigated DPF is the
well-known square-well (SW) fluid. By varying the inter-
action range this model system is able to mimic the
behaviour of a large variety of real fluids (see e.g. [8] and
references therein). The liquid–vapour (LV) phase
diagram of the SW fluid has been studied by means of
computer simulations, perturbation theories, as well as
integral equation theories [9–20]. Recently, within the
framework of the self-consistent Ornstein–Zernike
approximation (SCOZA), its LV-coexistence has been
reinvestigated and described with high accuracy [21].

A formidable advantage of the DPFs is the fact
that analytical representations of the corresponding
equations of state become more tractable than for
continuous potentials [22]. Interestingly, the phase
diagram of a DPF formed by a square shoulder plus an
attractive square well exhibits a rather complex
behaviour with multiple fluid–fluid transitions [23].

Recently, both the structural and thermodynamic

properties of three DPFs, the square well, the

square-well barrier and the square well–barrier well,

have been studied in detail [7]. While the phase

diagram of such systems has been explored by means

of the Gibbs ensemble simulation technique [24],

sophisticated theoretical approximations like SCOZA

usually become unstable for DPFs that include repul-

sive parts in the interaction tail. In SCOZA the

problem resides in the diffusion-like coefficient of the

SCOZA partial differential equation (PDE) [21] which

becomes negative when a repulsive part in the inter-

action (apart from the hard-core repulsion) is consid-

ered making a numerical solution of the PDE rather

impossible.
Commonly, the hard-sphere system is used as the

standard reference system in perturbation-like theories

or in the numerical solution of SCOZA [21]. In

particular, the Waisman parametrisation gives a good

analytical representation of the direct correlation

function of the hard-sphere system in a large regime

of densities [25]. However, due to the limitations

discussed above, SCOZA cannot be solved numerically

via the standard route for DPFs composed of succes-

sive combinations of barriers and wells. One way to

overcome this limitation is to redefine the reference

system. The interaction potential of this new reference

system must include the repulsive part of the
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interaction potential which destabilises the numerical
solution. In the particular case of SCOZA, the direct
correlation function is split into two terms: the
correlation function of the reference system, which
includes all the repulsive contributions, and the corre-
lation function of the attractive contribution which is
determined by solving the SCOZA PDE. This pro-
cedure has been applied to study the phase-diagram of
DPFs [26] similar to those already investigated in [23].

The aim of this work is therefore to develop a
simple and useful analytical expression for the direct
correlation function of a particular case of DPF, which
can be used as a new reference system in different
theoretical approximations. In particular, in this work
we are interested in the square-shoulder (SS) fluid. Our
parametrisation scheme is based on a soft-core fluid
model [27].

The paper is organised as follows: in Section 2 we
describe the functional form of the interaction poten-
tial which characterises the SS fluid. The method of
solution used in this work is based on Baxter’s
factorisation technique. So, we briefly recall Baxter’s
factorisation method for the analytical expressions of
the direct correlation function (DCF) of the
hard-sphere (HS) fluid. Section 3 describes the pro-
cedure to obtain the parametrisation of the DCF for
the SS fluid. We compare our analytical solutions with
the full numerical solution of the Ornstein–Zernike
(OZ) equation within the Percus–Yevick (PY) approxi-
mation. In addition, the DCF obtained from the
parametrisation is used to compute the radial distri-
bution functions (RDFs). The RDFs are also tested
against Monte Carlo computer simulations. Finally,
the paper is closed with concluding remarks.

2. Model system and Baxter’s factorisation method

We consider a system of spherical particles of diameter
� which are interacting via a square-shoulder potential,
�SS(r), given by

�SSðrÞ ¼

1, r5 �,

�, � � r � ��,

0, r4 ��,

8><
>: ð1Þ

where r is the interparticle distance, � is the (positive)
height of the shoulder and � is the reduced range of the
potential barrier.

2.1. Baxter’s factorisation

For a one-component fluid with spherically symmetric
interactions, the Ornstein–Zernike (OZ) equation is

given by [28]

hðrÞ ¼ cðrÞ þ �

Z
cðr0Þhð r� r0

�� ��Þ dr0, ð2Þ

where � is the particle number density. The OZ

equation defines the direct correlation function c(r) in

terms of the total correlation function, h(r)¼ g(r)� 1,

g(r) being the well-known radial distribution function.

According to the Baxter factorisation technique [29],

the OZ equation can be cast into the form

rcðrÞ ¼ �q0ðrÞ þ 2p�
Z 1
0

du qðuÞq0ðrþ uÞ, ð3Þ

rhðrÞ ¼ �q0ðrÞ þ 2p�
Z 1
0

du qðuÞðr� uÞhðjr� ujÞ, ð4Þ

where the factor function q(r) is an auxiliary function,

and the prime denotes differentiation with respect to r.

In order to solve Equation (2) or, alternatively,

Equations (3) and (4), additional relations that link

the structure functions to the interaction potential

between the particles are needed. These approximative

relations between h(r) and c(r) are usually called

closure relations [29]. A useful closure relation for

systems with repulsive short-range interactions is the

well-known Percus–Yevick approximation [29]

given by

cðrÞ ¼ expð���ðrÞÞ � 1½ � yðrÞ ¼ f ðrÞ yðrÞ, ð5Þ

where y(r)¼ exp(��(r))[h(r)þ 1], f (r)¼ exp(���(r))� 1

is the Mayer function, �� (kBT )�1 is the inverse of the

thermal energy with kB being the Boltzmann constant,

T the absolute temperature and �(r) is the interaction

potential.
Unfortunately, in the present form only a numer-

ical procedure allows one to compute the DCF for the

SS fluid within the PY approximation. Then, further

approximations are needed to calculate an approxi-

mate analytical solution, as we will see below. To

illustrate the method to find an analytic expression by

means of Baxter’s factorisation method, we briefly

recall the solution procedure for the hard-sphere

system [30].

2.2. Hard-sphere fluid

The hard-sphere interaction potential is given by the

relation [29]

�HSðrÞ ¼
1, r5 �,

0, r � �:

�
ð6Þ
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Within the PY approximation for the hard-sphere
interaction, the structure functions take the following
values: h(r)¼�1 for 0� r5� (hard-core condition)
and c(r)¼ 0 for r� �. The latter condition implies that
q(r)¼ 0 for r� � [31]. Therefore, using both conditions
together with Equation (4) we obtain the relation

�r ¼ �q0ðrÞ � 2p�
Z �

0

du ðr� uÞqðuÞ for 0 � r � �:

ð7Þ

To satisfy Equation (7) q0(r) for the HS system must be
of the form

q0HSðrÞ ¼ aHSrþ bHS: ð8Þ

Now, by inserting Equation (8) into the r.h.s. of
Equation (7) and comparing both l.h.s. and r.h.s. of the
resulting equation, we find that the coefficients aHS and
bHS are given by

aHS ¼ 1� 2p�
Z �

0

duqHSðuÞ, bHS ¼ 2p�
Z �

0

duuqHSðuÞ:

ð9Þ

Then, by integrating q0HS(r) and using the fact that
qHS(r)¼ 0 for r4� [31], the factor function can be
written as

qHSðrÞ ¼
1

2
aHSðr

2 � �2Þ þ bHSðr� �Þ: ð10Þ

Inserting Equation (10) into Equation (9) yields

aHS ¼
1þ 2�

ð1� �Þ2
, bHS ¼ �

3

2

�

ð1� �Þ2
�, ð11Þ

where �¼ (	/6)��3 is the packing fraction. Finally, by
inserting Equations (10) and (11) in Equation (3), one
obtains the analytic expression for the DCF of the
hard-sphere fluid within the PY approximation,

cHSðrÞ ¼ �
1

ð1� �Þ4

"
ð1þ 2�Þ2 � 6�

�
1þ

1

2
�

�2
r

�

þ
1

2
�ð1þ 2�Þ2

r

�

� �3#
: ð12Þ

3. Square-shoulder fluid

3.1. Soft-core fluid approach

As we already discussed in the last section, in the
procedure to obtain an analytical solution for c(r)
through Baxter’s formalism, it is necessary to know the
functional form (or, at least, a first approximation) of
h(r) of the system. In particular, the hard-core

condition leads to h(r)¼�1 in the interval 0� r5�.
However, the functional form of the total correlation
function outside the hard core is, in general, unknown.
On the other hand, for discrete-like potentials, h(r)
shows a non-zero contact value which makes the
function discontinuous at r¼ �. We here propose a
simple approach for the factor function in terms of a
soft-core fluid model which allows us to simplify the
complete problem.

Let us assume that the factor function can be split
into two terms:

qðrÞ ¼ q0ðrÞ þ qSCðrÞ, ð13Þ

where q0(r), known as the reference factor function,
takes the values q0(r)¼ 0 for r� �, and qSC(r), defined
as the soft-core factor function, becomes qSC(r)¼ 0 for
r4��. Similarly, we split the total correlation function
into two contributions

hðrÞ ¼ h0ðrÞ þ hSCðrÞ, ð14Þ

where each subindex has the same meaning as the one
defined for the factor function (13).

Inserting Equations (13) and (14) into Equation (4),
we obtain the following relation,

r h0ðrÞ þ hSCðrÞð Þ

¼ �ðq00ðrÞ þ q0SCðrÞÞ þ 2p�
Z 1
0

du q0ðuÞ þ qSCðuÞ½ �

� ðr� uÞ h0ðjr� ujÞ þ hSCðjr� ujÞ½ �

¼ �q00ðrÞ � q0SCðrÞ þ 2p�
Z �

0

duq0ðuÞðr� uÞh0ðjr� ujÞ

�

þ

Z ��

0

duqSCðuÞðr� uÞh0ðjr� ujÞ

þ

Z �

0

duq0ðuÞðr� uÞhSCðjr� ujÞ

þ

Z ��

0

duqSCðuÞðr� uÞhSCðjr� ujÞ

	
: ð15Þ

We now proceed to analyse each integral in
Equation (15). One can notice that the first and last
integral depend only on the reference system and the
soft-core fluid contribution, respectively, whereas the
other ones are functions of the crossed terms. We here
assume that the latter ones can be neglected because
they are evaluated in regions where one expects that
their contribution becomes negligible. In other words,
the product qSCh0, which appears in the second integral,
is evaluated in 05r5�� where it is expected to have a
small contribution inside the range of the potential.
Therefore, qSCh0� 0 in the whole interval. In analogy,
the third integral is approximated to zero, within our
assumption, since the product q0hSC is expected to be
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irrelevant in the hard core. Then, the crossed terms will
play no role in Equation (15).1 This allows us to simplify
Equation (15),

r h0ðrÞþ hSCðrÞð Þ ��q00ðrÞ� q0SCðrÞ

þ 2p�
Z �

0

duq0ðuÞðr� uÞh0ðjr� ujÞ

þ 2p�
Z ��

0

duqSCðuÞðr� uÞhSCðjr� ujÞ:

ð16Þ

Equation (16) is fulfilled if we find solutions of the
following two Baxter equations for the reference
system and the soft-core fluid separately,

rh0ðrÞ ¼ �q
0
0ðrÞ þ 2p�

Z �

0

du q0ðuÞðr� uÞh0ðjr� ujÞ,

ð17Þ

and

rhSCðrÞ ¼�q
0
SCðrÞþ2p�

Z ��

0

duqSCðuÞðr�uÞhSCðjr�ujÞ:

ð18Þ

We now consider the hard-sphere fluid, discussed in
the previous section, as the reference system and,
following the ideas for the soft-core fluid proposed
originally by Cummings et al. [27], we here propose an
ansatz for the total correlation function of the soft
square-shoulder fluid, hSS(r),

hSSðrÞ ¼ �1þ 
 expð���Þ, r � ��, ð19Þ

where 
 is an unknown and dimensionless parameter,
which can be adjusted, for example, by enforcing
thermodynamic self-consistency, and �� is the height of
the SS in units of kBT.

Inserting Equation (13) into Equation (3) we
obtain,

rcðrÞ ¼ �½q00ðrÞ þ q0SSðrÞ� þ 2p�
Z �

0

du q0ðuÞq
0
0ðrþ uÞ

þ 2p�
Z ��

0

du qSSðuÞq
0
SSðrþ uÞ

þ 2p�
Z �

0

du qSSðuÞq
0
0ðrþ uÞ

þ 2p�
Z �

0

du q0ðuÞq
0
SSðrþ uÞ: ð20Þ

Equation (20) is basically composed of three contribu-
tions, namely,

rcðrÞ ¼ rc0ðrÞ þ rcSSðrÞ þ rcRESðrÞ, ð21Þ

where c0(r) is the direct correlation function of the
hard-sphere fluid, given by Equation (12), cSS(r) is the

direct correlation function of the soft square-shoulder,

rcSSðrÞ ¼ �q
0
SSðrÞ þ 2p�

Z ��

0

du qSSðuÞq
0
SSðrþ uÞ ð22Þ

and cRES(r) the residual direct correlation function,

rcRESðrÞ ¼ 2p�
Z �

0

du qSSðuÞq
0
0ðrþ uÞ

þ 2p�
Z �

0

du q0ðuÞq
0
SSðrþ uÞ: ð23Þ

From Equation (23), one can notice that the residual
term, defined inside the hard core, is given by the
product of crossed terms, similar to the ones discussed
in Equation (15), and then one could neglect them.
However, the evaluation of cRES(r) is straightforward
once Equation (22) is solved. We have explicitly
checked that such contribution becomes unimportant.
Then, the direct correlation function of the system is
simply given by the reference contribution plus the soft
square-shoulder contribution.

Therefore, by inserting Equation (19) into
Equation (18) we obtain the factor function of the SS,

q0SSðrÞ ¼ aSS rþ bSS, ð24Þ

then

qSSðrÞ ¼
1

2
aSS r2 � ð��Þ2


 �
þ bSS ðr� ��Þ, ð25Þ

where

aSS ¼ E� 1� 2p�
Z ��

0

du qSSðuÞ

� 	
,

bSS ¼ E� 2p�
Z ��

0

du qSSðuÞu

� 	
,

ð26Þ

with E�¼ 1� 
exp(���). Then, a straightforward
integration leads to

aSS ¼
1þ 2�2E

2
�

ð1� E2
��2Þ

2
E�, bSS ¼ �

3�2��E
3
�

2ð1� E2
��2Þ

2
, ð27Þ

where �2¼ (	�/6)(��)3. Then, by insertingEquation (25)
into (22) the DCF of the soft SS fluid reads

cSSðrÞ ¼ �
1

2
a2SS�r

3 þ 6��2ðaSS þ bSSÞ
2r

� ��3aSSð6bSS þ 4aSSÞ � aSS: ð28Þ

3.2. Direct correlation function: comparison with PY
closure

In the following, we are going to test the predictions
given by this approximation by firstly fixing the
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unknown parameter 
 to 1 and afterwards defining 
 as
a function of the thermodynamic state and the potential
parameters that is able to reproduce the results obtained
by the PY closure relation, which represents a good
approximation for short-range repulsive interactions.

Figure 1(a) and (b) show the DCF given by
Equation (28) for a SS systemwith potential parameters

�¼ 1.3, ��¼ 0.2 and �¼ 1.5, ��¼ 0.5, respectively, for
different reduced densities, �	� ��3. The potential
parameters were taken from [23]. Clearly, one can
observe that the parametrisation gives a qualitative
description of the behaviour of the DCF when
it is compared with the full numerical solution of
the OZ equation within the PY approximation.

0.5 1 1.5

r/σ r/σ

r/σ r/σ

–1.5

–1

–0.5

0

0.5

c(
r/

σ)
c(
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(a)

0.5 1 1.5
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(b)

Figure 1. Direct correlation functions of the SS fluid with potential parameters (a) �¼ 1.3, ��¼ 0.2 and (b) �¼ 1.5, ��¼ 0.5.
Symbols are obtained from our parametrisation with 
¼ 1.0 and lines from the PY closure relation.
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Figure 2. Direct correlation function of the SS fluid with the same potential parameters as in Figure 1(a) �¼ 1.3, ��¼ 0.2 and
(b) �¼ 1.5, ��¼ 0.5. Lines are obtained from the PY approximation and symbols from our parametrisation Equation (29): in (a)
parameter 
 takes the values: 
(�	¼ 0.1)¼ 0.96, 
(�	¼ 0.4)¼ 0.857, 
(�	¼ 0.806)¼ 4.8, 
(�	¼ 0.8)¼ 0.77; in (b)

(�	¼ 0.1)¼ 0.911, 
(�	¼ 0.4)¼ 0.086, 
(�	¼ 0.6)¼�0.92, 
(�	¼ 0.8)¼�2.31.
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However, strong deviations are seen when the density,
the potential range increase or the temperature
decreases; such deviations are larger inside the hard
core. However, there is still some freedom that can be
exploited: for all the potential parameters and densities
here considered, we assumed that 
 is set to one.

However, 
 can be adjusted to reproduce either the
theoretical or the simulation data. This means that such
a parameter depends explicitly on the properties of the
system; 
¼ 
[�, ��; �]. Then, it is convenient to look for
a way to express 
 in terms of the density and the
potential parameters.
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Figure 4. Radial distribution functions of the SS fluid with potential parameters �¼ 1.5 and ��¼ 0.5 for different reduced
densities �	. Symbols are obtained from Monte Carlo computer simulations and lines from our parametrisation with 
¼ 1.0.
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Figure 3. Radial distribution functions of the SS fluid with potential parameters �¼ 1.3 and ��¼ 0.2 for different reduced
densities �	. Symbols are obtained from Monte Carlo computer simulations and lines from our parametrisation with 
¼ 1.0.
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A simple quadratic expansion in density leads to a

good fit. Thus 
 is given by


 ¼ 1þ �1�þ �2�
2, ð29Þ

whose coefficients depend, after extensive computer sim-

ulations, linearly on the potential strength and potential

range, having the following functional form: �1¼
[�0.17� (28.2/	)��]þ [�(5/21)þ (17.64/	)��]�, �2¼
[�4.6þ 17.6��]þ [(36.5/	)� 51.488��]�.
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Figure 5. Radial distribution functions of the SS fluid with potential parameters �¼ 1.3 and ��¼ 0.2, same as Figure 3(a), for
different reduced densities �	. Symbols are obtained from Monte Carlo computer simulations and lines from our parametrisation
and 
 given by Equation (29).
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Figure 6. Radial distribution functions of the SS fluid with potential parameters �¼ 1.5 and ��¼ 0.5, same as Figure 3(b), for
different reduced densities �	. Symbols are obtained from Monte Carlo computer simulations and lines from our parametrisation
and 
 given by Equation (29).
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In Figure 2(a) and (b) we show the cSS(r) with the
same potential parameters as in Figure 1(a) and (b),
respectively. From the figures it becomes clear that the
parametrisation together with Equation (29) works
better than the simple assumption that 
¼ 1, especially
in the case of the highest density considered. In
general, one can observe that the DCF reproduces
successfully the whole behaviour inside and outside the
core including systems with longer interaction range
and lower temperature.

3.3. Pair correlation function: comparison with MC

To illustrate the applicability of our parametrisation,
we now compare the pair correlation functions, g(r)’s,
obtained by means of MC computer simulations with
those calculated using Equation (28) and the Ornstein–
Zernike equation. Before discussing our results, we
should remark that usually approximations for the
direct correlation functions do not preserve the
hard-core condition on the g(r). Such a limitation is
also characteristic of our approach; deviations
increase slightly with increasing density. However, in
Figures 3–6 we explicitly enforce the hard-core (HC)
condition (h(r)¼�1 for r5�). This is done as follows:
outside the core the DCF c(r) is given by the
parametrisation while inside the core we set
c(r)¼��(r)� 1 which incorporates the HC condition.
Together with the OZ relation we finally arrive at a c(r)
and �(r) that fullfill the HC condition. Additionally, we
point out that, although our approach does not preserve
entirely the HC condition in the g(r), we have checked
numerically that it preserves the positivity of the
resulting structure factor over all the range of para-
meters we have explicitly considered (data not shown).

Figures 3 and 4 show the gSS(r)’s (solid lines)
obtained from the procedure described above for the
systems already discussed in Figure 1 and 
¼ 1. We
compare our results with MC computer simulations
(open circles). The gSS(r) reproduces qualitatively the
simulation data, although again larger deviations are
found when either the density is increased or the
potential range and strength are larger.

Now, our parametrisation and the relation for 

(29) are employed together with the OZ equation to
compute the gSS(r) of the systems described in Figure 2.
The results are plotted in Figures 5 and 6, where an
excellent agreement between theory and simulation is
found although at very high densities (�	40.8) the
contact value is slightly underestimated by our theo-
retical approach.

We can conclude that our analytical expression is a
good approximation for the c(r) of SS fluids.

According to our previous analysis, such an expression
is accurate up to a reduced density �	¼ 0.9 and values
of the potential parameters 15�� 2 and 05��� 0.5.

4. Concluding remarks

We have developed a parametrisation of the direct
correlation function for the hard-core square-shoulder
fluid based on a simple soft-core potential model. The
accuracy of our parametrisation is comparable to the
results obtained within the PY approximation and
works nicely for the systems under investigation.
Additionally, the pair correlation functions obtained
through MC simulations were well reproduced by our
parametrisation.

Due to its simplicity and applicability, our para-
metrisation can be easily incorporated into elaborate
theories, like thermodynamic perturbation theories, or
even in more elaborate theoretical approaches, like
SCOZA, to compute the structural properties or the
phase diagram of DPF which consider the
square-shoulder fluid as the new reference system.
Work along these lines is in progress.
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Note

1. This assumption was already corroborated by using the
resulting solution of Equation (15) into the numerical
evaluation of the crossed terms (data not shown).
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